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Abstract. A computerized pneumatic sampler connected to capillary electrophoresis (CE) was used

for monitoring the degradation process of L-ascorbic acid (L-AA). The sampler allowed performing
multiple injections during one electrophoreticrun without high voltage interruption. The decrease

in the concentration of L-AA in the samples (orange juice and orange fruits of which the squash
was prepared by squeezing the fresh fruit) could be monitored between the runs as well as within

the test cycles consisting of 10 injections with 10 min injection intervals. A significant decrease in

the L-AA concentration after 72 h storage in a dark and dry room at 17°C was observed in orange
juice, but not in orange squash. The relative standard deviation of the migration time was less than

1% and the intraday and interday r.s.d. of peak areas were respectively 2.1 and 2.8%. The limit of

detection was 1 ppm. Automated sampling for the CE method was found to be highly suitable for

the determination of L-AA in fruits and fruit products as well as for the monitoring of L-AA

degradation process.
”
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INTRODUCTION

The determination of L-ascorbic acid (L-AA) in fruits and fruit products is

very important as L-AA is a vital nutrient. As it is known as an extremely labile

substance, it is also vital to monitorL-AA’s stability during processing.
The analytical methods for determining L-AA include chemical methods such

as monitoring the visual end-point of the 2,6-dichlorophenol-indophenol
titration, which, however, does not always prove to be satisfactory enough,
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particularly in coloured solutions and if some other reducing impurities are

present [l]. Another method, the reaction with 2,4-DNP is a very complicated
6-h process at 20°C. Temperature and time affect the extent of the reaction but

they have a much more profound side effect on the reaction of possible
interfering substances. High performance liquid chromatography (HPLC) is the

most popular alternative to the standard methods. Currently the most common

analytical methods are HPLC separation based on ion-exchange or reversed-

phase columns with UV-absorbance, fluorescence or electrochemical detection,
and gas chromatography with flame ionization detection [2]. New HPLC

methods continue to be developed for the analysis of total vitamin C and its

individual vitamers [2]. HPLC is easy and reliable in comparison with the

chemical methods. However, it has several drawbacks including the time-

consuming conditioning of the columns, the large consumption of solvents, and

the high price of columns. As an alternative method, in the current work L-AA’s

monitoring with capillary zone electrophoresis (CZE) was performed.
Nowadays capillary electrophoresis (CE) is successfully used in various

application fields such as biochemistry, biotechnology, pharmaceuticals, and

clinical chemistry [3-s]. A number of reports have appeared concerning the

application of CE techniques to the examination of food systems. However,

judged by lists of the application of the CE presented in recent monographs
[6-8] the impact of CE in food science and particularly in the quality control of

food and food additives has been minor. Fruits and fruit juices appear to be

simple enough matrixes so that their vitamin C content can be reliably
determined without performing complicated sample preparation procedures for

separating the vitamin from interfering artifacts. This may be partly due to

processing and fortification, as a result of which the vitamin C occurs in juice in

free (unbound) form, in relatively large concentrations, and potentially as a

single vitamer. Recently the determination of total L-AA in foods by CZE with

detection limits of 0.25 ppm [2] and 0.5 ppm [9] was reported. This is an

exceptionally good result. Detection limits reported by other investigators (e.g.
10 ppm [l, 10] or 1 ppm [11]) are frequently not sufficient when dealing with

real life samples.
An important problem in the analysis of L-AA is the instability of vitamin C.

The decision to assay a single vitamer by any technique should be weighed
carefully according to many investigators [2, 8, 10, 12], who show that the

vitamin C content in orange juice has been frequently underestimated when the

dehydroascorbic acid (DHAA) content has been ignored. It is a well-known fact

that L-AA oxidizes to DHAA. Therefore several antioxidants have been added to

the sample before analysis. Although the role of the stabilizers in the

determination of L-AA is known to be essential, there are no reports on the

consequences if no stabilizing agent was used, i.e. there are no reports on

monitoring the degradation process itself.
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In this study the degradation process of L-AA occurring in the pure vitamin C

sample and the effect of the antioxidant added to the sample were followed by
monitoring the sample behaviour during several hours and days. For this purpose
we used a computerized pneumatic sampler developed in our laboratory [l3]

taking advantage of the capability of the sampler to perform multiple injections
from the same sample vessel during a single analysis cycle. With the help of the

above-mentioned sampler, it was also confirmed that the reactions taking place
inside the capillary during the electrophoresis process throughout one testing
cycle of multiple injections could be eliminated by adding a stabilizing agent to

the running buffer.

Another aim of this work was to reduce detection limits by using a pneumatic
sampler taking advantage of its capability to perform sophisticated sampling

sequences under computer control. The sampler was used to perform field

amplified sample stacking. This enabled us to reduce the detection limit of L-AA

to 1 ppm.

EXPERIMENTAL

Chemicals and sample preparation

L-AA was obtained from Sigma Chemical Company, phosphoric acid from

YA-Kemia OY, and sodium hydroxide from Chemapol. As a stabilizing
agent for the L-AA the L-cysteine [l4] from Merck was used. The standard

L-AA was dissolved in MilliQ water or buffer to give concentrations in the range
1-350 ppm. -

Fruits and juices (Largo from Marli, Finland) were purchased from the local

supermarket. In determining the L-AA’s content in fruits and juices the products’
solutions were filtered through 0.45 um Millipore filters. The L-AA sample was

analysed after the extraction of the sample with MilliQ water followed by
filtering through a 0.45 um filter and adding L-cysteine for stabilization. After

that the sample was injected immediately.

Apparatus andmethod

The CE system consisted of a home-made pneumatic autosampler and a

home-made high voltage supply delivering 18 kV. The CE separation was

achieved with an untreated fused-silica capillary with 80 cm full length (50 cm

to the detector), 50 um i.d., and 365 pm o.d. (Polymicro Technologies, Phoenix,

AR, USA), and an “Isco CV*’ UV detector at 245 nm. The detector signal was

digitized and transferred to a “486” type computer via a Keithley “ADC-16"

analog-to-digital board. The same board delivered digital signals to the solenoid

valves controlling the autosampler. Experiment control and data acquisition were

performed with home-made software written in C.
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Prior to use, each capillary was rinsed with 1 M NaOH for about 15-20 min,
then with MilliQ water, 0.1 M NaOH, and finally with the separation buffer.

Between the analyses, capillaries were rinsed with 0.1 M NaOH and

subsequently with the separation buffer.

Pneumatic autosampler

The only difference of our system from a classical CE instrument is the

sampling device, which enables combining the electrokinetic and hydrodynamic
sample introduction methods as well as multiple sampling under computer
control according to the sequence generated by computer. Since the sampler
design has been described in several papers [l3, 15, 16], only a brief outline will

be given here. The schematics of the autosampler is shown in Fig. 1.

The sampling is based on the idea of rapid (during 50 ms) replacement of the

buffer and sample in the capillary input channel with dimensions of 1 mm i.d.

and 1 cm length. The sample introduction to the separation capillary takes place
by electroosmosis during the time when the sample is standing still (“hold” time)
in the inlet channel of the sampler. As the rinse of the sample past the capillary
end takes place under pressure, a part of the sample is introduced into the

capillary also hydrodynamically during the rinse time when it passes the

capillary end inserted into the inlet channel [l5, 16]. The sampler operates on

varying sample rinse/hold time ratio by which the capillary inlet is filled with

different amounts of the sample. This property of the sampler enables

performing head column stacking in addition to common hydrodynamic and

electrokinetic sampling.

Fig. 1. Schematics of the pneumatic autosampler.
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RESULTS

Buffer composition, reproducibility of experiments, and L-AA detection

limits

As pK, for L-AA is 4.1 and pK, is 11.8, it is obvious that the buffer pH

must be above 4.2 to ionize the L-AA for performing the CZE separation.
Increasing pH value should result in shorter migration times with higher speed of

separation. On the other hand, in neutral or alkaline conditions the degradation
of L-AA is promoted. Therefore the optimum pH of the running buffer was

found to be between 7.0 and 7.5.

The reproducibility of migration times and peak areas in CZE was evaluated

by comparing the intraday and interday electropherograms as all the experiments
were carried out in optimum conditions determined from the above

investigations. The mean value of the migration time of the L-AA peaks was

about 9 min. The variation of the migration time of the L-AA peaks was less than

1%. The reproducibility of the peak areas was about 0.4% within one

10-injection testing cycle, 2.1% intraday and 2.8% interdays. Compared with the

recent works of Fung & Kim [lo], where the reproducibility of peak areas was

<5%, it can be concluded that our sampler enabled improving the reproducibility
within one series of experiments. This could be attributed to the fact that to

operate the sampler it is not necessary to interrupt the electrical field for

performing multiple injections in series during one experiment.
During our experiments the detection limit for L-AA was 1 ppm. These

results show that the CE method can be used for both qualitative and quantitative
determination ofL-AA even in rather low concentrations meeting favourably the

needs of L-AA determination in real samples where so low concentrations are

not likely to occur.

Effect of antioxidant

For eliminating the degradation reactions of L-AA inside the capillary during
electrophoretic separation a stabilizing agent (L-cysteine) was added to the

running buffer. Results are presented in Fig. 2. It follows from the figure that

without L-cysteine the sample demonstrated complicated kinetics when staying
in the sample vessel as well as during the separation in the capillary (since the

figures are different). Because the demonstration of the monitoring capabilities
of the sampler was not the aim of this study, speculations about the nature and

essence of the processes (which are probably due to the presence of oxygen in

the sample and buffer) are beyond the scope of this paper.
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L-AA in commercial food products made from orange

Results of the monitoring of orange juice and orange squash are presented in

Fig. 3, where the confirmation of the L-AA peaks is shown. The peaks of L-AA

were identified by characterizing the sample peak in terms of the migration times

in comparison with those of the standard, by UV spectrum (L-AA has strong
absorption maximum at detection wavelength A = 245 nm), and also using the

spiking technique as shown in Fig. 3. For the verification of the identification

two electropherograms of juiceand squash (pure and spiked with L-AA) samples
are presented.

Figure 3 indicates that L-AA peak is well separated from the rest of the peaks
in the electropherogram meaning that the CZE separation of L-AA in fruits and

juices is not remarkably subject to interference by other components in these

products. Since multiple injections from the sample were performed
subsequently without interrupting the high voltage, the peaks on the pherograms
appear as clusters corresponding to the single injections. The dominating feature

in the squash pherogram is the L-AA peak, the relatively few interfering peaks
are with low intensity, i.e. the chosen UV detector wavelength was favourably
discriminating interfering compounds. This is in accordance with findings of

other investigators [2]. The concentration of L-AA was 100 mg/L in juice and

150 mg/L in squash.

Fig. 2. Monitoring L-AA degradation. Five consecutive injections of L-AA in water solution.

Peaks: a, L-AA; b, stabilizer (L-cysteine); c, degradation product(s?). (BGE-20 mM phosphate
buffer, pH = 6.9; 250 mg/L L-cysteine; detectorwavelength A = 245 nm.)
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Figures 4 and 5 demonstrate how the efficiency of a stabilizer affects the

quality of different food products made from orange. In case the orange juice
sample has no stabilizer in it and is kept in the open air, it is apparently subject
to oxidation. The set of pherograms recorded within one experiment of three

Fig. 3. Electropherograms of orange juice and orange squash. BGE - phosphate buffer with

pH = 6.9 + 250 ppm L-cysteine, detector wavelength A =245 nm. A, orange juice filtered and

diluted with 50% of MilliQ water (three injections of the same sample); B, the same as A but

spiked with 250 ppm L-AA; C, orange squash, filtered and diluted with 50% of MilliQ water (two
injections of the same sample); D, the same as C but spiked with 250 ppm L-AA.

Fig. 4. Kinetics of L-AA degradation within 3 h in orange squash (A) and orange juice (B). (BGE
20 mM phosphate buffer with 250 mg/L L-cysteine.)
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injections (Fig. 4A) demonstrate that significant L-AA degradation processes
occur already within a 3-h interval. During this time the intensity of the L-AA

peak drops 20%.

On the other hand, adding stabilizer to orange squash seems to be more

efficient since the degradation of L-AA was not very extensive within a 3-h

interval. The set of pherograms recorded within one experiment of three

injections (Fig. 4B) demonstrates that insignificant L-AA degradation processes

occur and the intensity of the L-AA peak drops about 5% during this time.

The decrease in the L-AA content was also monitored during a longer period
of 3 days. It was found that the L-AA’s content in orange juice had decreased

about twice compared to fresh juice (Figs. 5 and 6). Its concentration in fruit

Fig. 5. Kinetics of L-AA degradation in orange juice kept in the open air. A, analysed immediately
after preparation; B, after 72 h. (BGE - 20 mM phosphate buffer + 250 mg/L L-cysteine.)

Fig. 6. Kinetics of L-AA degradation in orange squash kept in the open air. A, analysed immediately
after preparation; B, after 72 h. (BGE — 20 mM phosphate buffer + 250 mg/L L-cysteine.)
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squash had not changed so significantly. Based on these findings we

concluded that some ingredients are present in fruits that have a stabilizing effect

on L-AA, which may have been destroyed in industrially produced juices.
However, since the main aim of the current paper was not the demonstration of

the monitoring capabilities of the sampler, no attempts were undertaken to

identify the stabilizing ingredients in orange squash.

CONCLUSION

CZE appeared to be a fast and highly selective method free from interferences

for the determination of L-AA in several orange product samples. It is possible
to avoid the inconvenient sample preparation stage of the analysis. Also, as the

detection limits were satisfactory, the time consuming pre-concentration steps
can be avoided. For quantitative analysis the internal standard method is

preferable.
The design of the pneumatic sampler used in this work enabled easy

interfacing of the reactors (for which sample vessels were essential in the current

work) to the sample flow path and performing multiple injections under

computer generated time sequences. The effect of antioxidants in storing the

food products can be easily monitored by this sampler; besides, fresh orange

squash appeared to contain natural stabilizing ingredients instrumental in its

preservation. Lack of such ingredients in the commercial orange juice was also

confirmed by the monitoring.
It can be concluded that CZE, as a method, is relevant for both monitoring the

L-AA stability in different solutions and its determination from the real samples.
Once again the notorious instability of L-AA was exposed and proven.
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L-ASKORBIINHAPPE LAGUNEMISPROTSESSIDE UURIMINE

APELSINIDES JA APELSINIMAHLADES |
KAPILLAARTSOONELEKTROFOREESIGA KASUTADES ARVUTI

POOLT JUHITAVAT PNEUMAATILIST PROOVISISESTUSSEADET

Ruth KULDVEE Kadri VUNDER Mihkel KALJURAND

L-askorbiinhappe (L-AA) lagunemist apelsinides ja apelsinimahlas uuriti

kapillaartsoonelektroforeesi abil. Korduvkatsete tegemiseks kasutati arvutiga
juhitavat pneumaatilist proovisisestusseadet, et korgepingevili ei katkeks.

Vorreldi L-AA sisaldust virsketes produktides (apelsinist pressitud ja toos-

tuslikult toodetud mahlas) ja 72 tundi sdilitatud toodetes (17°C, pimedas, kuivas

ruumis). L-AA sisaldus vihenes nimetatud ajaintervalli jooksul madrkimisvéarselt

toostuslikus mahlas. Samuti tdheldati L-AA sisalduse vidhenemist mitmest

jarjestikusest proovisisestusest koosneva katsetstikli siseselt.

Migratsiooniaegade variatsioon oli vihem kui 1% ja piigipindalade variat-

sioon pdevasiseselt 2,1 ning pdevade vaheliselt mdddetuna 2,8%. Detekteerimis-

piir oli 1 ppm. Automatiseeritud proovisisestustehnika osutus kapillaar-
elektroforeesi meetodi korral suurepidraselt sobivaks nii L-AA midramiseks

puuviljades ja puuviljaproduktides kui ka L-AA lagunemisprotsesside selgita-
miseks.
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