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Abstract. The second step of the aldol-Tishchenko reaction proceeds over 6 + 6 bicyclic activated

complex leading initially to the formation of the secondary half-ester. The partial re-esterification of

the secondary half-ester into the primary one can be looked upon as a new, third step in the

reaction.
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INTRODUCTION

The aldol-Tishchenko reaction (Scheme 1) is the aldol condensation of two

aldehyde (1) molecules containing at least one o-H atom, followed by dis-

proportionation, where the resulting aldol (2) is reduced by a third aldehyde
molecule. The reaction yields regioisomers of 1,3-diol half-esters (3a and 3b).
One or two new chiral centres are introduced in the first step and the chirality
does not change later.

The aldol-Tishchenko reaction (one-pot synthesis) is advantageous if the

initial aldehyde is inexpensive and easily available (two-thirds of the aldehyde
form the carbon chain of the product, a third is spent on the reduction) [l]. Basic

hydrolysis of 1,3-diol half-esters, sometimes carried out directly in the same

reaction mixture [2], gives free 1,3-diols, which are widely used in industry [3]
and as intermediates in the syntheses of several natural compounds and their

analogues. The aldol-Tishchenko reaction was studied already at the end of the

last century and at the beginning of this century in Austria [2, 4-6]. The later

publications are rather sporadic; in recent years interest in this area has greatly
increased.
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Depending upon the conditions, the reaction may proceed in threecompetitive
directions:

(1) aldol-Tishchenko reaction affords half-esters (3a and 3b);

(2) elimination of water from (6) gives 0,[3-unsaturated aldehyde (7);
(3) Tishchenko reaction gives a simple ester (4).

The probabilities of these directions are determined by the catalyst, solvent,
and the structure of the aldehyde [l]. The formation of aldol (or 0,-unsaturated
aldehyde) is known to be favoured by strong bases (alkali and alkaline earth

metal hydroxides), while the formation of a simple ester via the Tishchenko

reaction is favoured by weak bases (Al alcoholates). Therefore, the proper

catalyst must be a base of medium strength [l, 3, 7-13]. According to most

publications, the best catalysts are various phenolates in polar aprotic solvents

(DMSO, DMF, HMPT) [l, 3,4, 7-9]. On the other hand, anhydrous K,CO;
without a solvent is a satisfactory catalyst for Me,CHCHO. Although the

reaction 1s slow, the yield of the half-ester is high (87%) [5, 6].
If the cross (nonclassical) aldol-Tishchenko reaction is carried out between an

unbranched aldehyde and Me,CHCHO, the latter always reacts as the methylene
component in the aldol condensation step and as the reducing agent in the

Tishchenko reaction step [l].

Scheme 1. General scheme of the classical aldol-Tishchenko reaction.
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RESULTS AND DISCUSSION

The mechanism of the aldol condensation, the first step of the reaction, is well

documented [l4-18]. The mechanism of the Tishchenko reaction has been

studied considerably less thoroughly, although in general the mechanism

(hydride ion transfer) has been known for a long time. It can be expected that the

mechanism of the aldol-Tishchenko reaction differs from the simple Tishchenko

reaction in two aspects: (1) in aldol there is a hydroxy group near the reaction

centre, which may participate in the reaction; (2) the catalyst is a rather strong
base, as it must catalyse also the aldol condensation. Aldehyde is always the

donor of the hydride ion and aldol is the acceptor [9, 19]. Earlier publications
[lO-12, 19] suggest the aldol-Tishchenko reaction product to be a half-ester in

which the primary alcoholic OH of the 1,3-diol is acylated (later in our text —

primary half-ester). Later works refer to the product [7-9] as a mixture of

regioisomers (primary and secondary half-ester) with the domination of the

primary one. Burkhardt and co-workers found the secondary half-ester (yield
43%) to be the main product (initial aldehyde Me,CHCHO, catalyst Ni enolate

(CsHs(PhsP)NiCH,CO-t-Bu)) [2o]. The first serious discussion on the reaction

mechanism is presented by Casnati and co-workers [B]. They suggest that aldol

is reduced by the hemiacetal formed from aldehyde and catalyst (ArOMgßr).
Consequently, the alcoholate of 1,3-diol and an aryl carboxylate are formed. The

following acylation of the alcoholate of 1,3-diol gives a primary half-ester and a

secondary half-ester.

Evans and Hoveyda [2l] studied the Tishchenko reaction of optically pure

isomers of B-hydroxyketones with different aldehydes using Sml, as a catalyst.
They suppose that in this case the Tishchenko reaction proceeds over a bicyclic
complex (5) including the metal cation. The aldehyde R*CHO forms an

alcoholate of hemiacetal with the OH group of the hydroxyketone. An

intramolecular hydride ion transfer follows (Scheme 2) [2l].

Scheme 2. The supposed activated complex in the Tishchenko reduction of B-hydroxyketones [2l].
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The product 1s the half-ester (6) of 1,3-diol. The acyl group is situated at the

oxygen of the diol that participates in the formation of the alcoholate of
hemiacetal (in our case it is the secondary OH group of the diol). The proceeding
of the reaction over such a bicyclic activated complex seems to be the only
reasonable explanation of the anti-configuration of the reaction product (6). This

reaction mechanism presented by Evans and Hoveyda can readily be used to

explain the second step of the classical aldol-Tishchenko reaction (Tishchenko
reduction) when simple basic catalysts are used. However, up to now it is not

exactly known how primary and secondary half-esters are formed. In our opinion
the fact of the formation the 6 + 6 bicyclic activated complex with subsequent re-

esterification may be common for all events independent of the structure of the

aldehyde and the catalyst [2l, 22]. For a more detailed study of the formation of

half-esters we carried out the aldol-Tishchenko reaction in simple (classical)
conditions using only one aldehyde and simple catalysts as described by Pochini

et al. [7]. In order to form only one chiral centre in the reaction, Me,CHCHO was

used as the initial aldehyde.
Both regioisomeric half-esters were separated by column chromatography on

silica (the mobile phase was a mixture of hexane and ethyl acetate with a 5:1

ratio). The purity of the primary half-ester, determined by capillary GLC, was

found to be excellent but the secondary half-ester was slightly contaminated with

the primary half-ester. The structure of these compounds was determined by 'H
and °C NMR as well as by IR spectroscopy. Our finding that the secondary half-

ester was contaminated with the primary one induced us to follow the reaction of

the formation of the primary and the secondary half-ester. For that purpose we

used capillary GLC and NMR spectroscopy. Data gathered from the pure isomers

were used to interpret the spectra of the reaction mixture. In order to follow the

formation of half-esters the doublet of protons at the chiral carbon atom was used

as a diagnostic signal. This signal is situated at 3.25 ppm (J =2.3 Hz) and

476 ppm (/=23 Hz) in the spectra of primary and secondary half-esters,

respectively.
The reaction was carried out at room temperature in DMSO using PhOMgßr

as a catalyst [7] and observed by GLC. In these conditions only some traces of

impurities were detected. The secondary half-ester was surprisingly formed first.

Within about 10 h the primary half-ester also began to form. The primary half-ester

was probably formed through isomerization from the secondary half-ester. The

re-esterification proceeded quite slowly. Isomerization probably gives a thermo-

dynamic equilibrium mixture of the secondary and the primary half-ester (2: 3).
Their ratio in the mixture did not change during several months of storage at room

temperature. The ratio of the concentrations of primary and secondary half-esters

vs. reaction time presented in the Figure indicates that the mixture equilibrates
after several hundered hours. An analogous isomerization, in which both specially
prepared pure regioisomeric half-esters of 1,3-diol turn into an equilibrium
mixture containing two regioisomers, was described by Burkhardt et al. [2o].
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The reaction that was then carried out under the conditions described by
Kirchbaum [6] in neat Me,CHCHO in the presence of anhydrous K,CO; as a

catalyst at 65°C proceeded also relatively slowly but gave similar results.

Probably the reaction mechanisms (Scheme 3) for both simple catalysts (K,CO3
and PhOMgßr) are similar. Such a mechanism of half-ester formation should

also apply to unbranched aldehydes. This assumption, however, requires further

study as the reaction is more complicated — CH3;CH,CH,CHO yields aldol with

two chiral centres and the number of isomers is bigger.

A plot of the ratio of the concentrations of half-esters (secondary/primary) vs. time.

Scheme 3. Mechanism of the aldol-Tishchenko reaction including the formation of a secondary
half-ester.
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The best explanation of our results includes a similar activated complex as

presented by Evans and Hoveyda [2l] in which the aldehyde is attached to the

OH group of aldol and the alcoholate of hemiacetal is formed in the aldol-
Tishchenko reaction. Thus, for the formation of a secondary half-ester a 6 + 6

bicyclic activated complex (7) is necessary. Correspondingly, a primary half-

ester as the first product must be formed via a 4 + 8 bicyclic activated complex
intermediate (8) (Scheme 4), which is evidently not so favourable as the 6 + 6

one.

This suggestion can explain why the secondary half-ester is formed preferably.
Our results confirm that under classical conditions the aldol-Tishchenko reaction

embodies also a third step, re-esterification reaction of the secondary half-ester to

the primary one. It is in good agreement with the suggested mechanism.

Analogous results were obtained by Mahrwald and Costisella [22]. They also

suppose, relying on the work of Evans and Hoveyda, that the second step of the

aldol-Tishchenko reaction proceeds over a 6 + 6 bicyclic activated complex as a

result of which a secondary half-ester is formed initially; it subsequently isomerizes

partially into the primary half-ester during 24 h. In this case we are dealing
with a nonclassical aldol-Tishchenko reaction. They used titanium ate complex
(BuTi(OIPr)4LI) as a catalyst but its exact structure was unknown. They supposed
that the re-esterification takes place only if the titanium ate complexes are prepared

Scheme 4. Mechanism of the aldol-Tishchenko reaction including the formation of a primary
half-ester.
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from lithium alkyles. If the same complex is prepared from magnesium alkyles, re-

esterification 1s prevented. In our opinion the catalyst probably influences the rate

of the formation of the secondary half-ester and the rate of re-esterification, but not

its existence.

In this reaction the re-esterification step is also due to the proceeding of the

reaction over the 6+ 6 bicyclic activated complex. Evidently, it is the only
possibility for the formation of the secondary half-ester as the first product. The

following re-esterification, which leads to a thermodynamically more stable

mixture of the secondary and primary half-esters, probably takes place in all cases,

although it is often quite slow as shown by us. So our results are in good agreement
with the results ofMahrwald and Costisella keeping in view that they observed the

reaction during 24 h only.

EXPERIMENTAL

NMR spectra were recorded in CDCI; and (CD3),SO with an AC 200 P

spectrometer (Spektrospin AG), 'H NMR 200 MHz, °C NMR 50 MHz, using
SiMe, as internal standard. IR spectra were recorded with INTERSPECTRUM

PFS 2020, with KBr windows. For GLC Chrom 5 (Laboratorni Piistroje, Praha)
and Tsvet 152 (Russia) instruments with FID and the following columns were

used: packed columns (glass 2.5 mX2 mm) Permabond Cyano Degs 80/100

mesh; 10% liquid crystal H-158 (4-(4-methoxycinnamoyloxy)-4 -methoxyazo-
benzene), Chromosorb W/HP 100/120 mesh; 5% Carbowax 20M, Chromaton N,
AW-DMCS 3 m x 0.125-0.160 mm; capillary columns NB-20M 25 m x 0.25 mm

and OV-101 25 mx0.25 mm. The carrier gas was nitrogen. In column

chromatography KSK 40-100 um (A/S TaNel, Estonia) silica, and in TLC

Silufol UV 254 (Kavalier, Czech Republic) plates were used.

In the '"H NMR spectrum of the secondary half-ester synthesized from

Me,CHCHO a far-displaced doublet can be seen at 4.76 ppm, belonging to the

proton at the secondary carbon atom and split (J = 2.3 Hz) by the proton at the

neighbouring tertiary carbon which itself could be detected as five doublets at

2.05 ppm (J =2.4 Hz). The two protons at the primary carbon bonded to the

hydroxyl group gave two doublets (J/ = 11.9 Hz, with midpoint at 3.15 ppm) due

to geminal spin-spin splitting caused by diastereotopism. For the primary half-

ester, a clear doublet belonging to the protons at the tertiary carbon was visible,
centred at 1.9 ppm, as well as two doublets (J=10.9 Hz) of diastereotopic

protons displaced by the influence of the ester group, centred at 4 ppm. For the

ester group a hydrogen septet (J = 7.0 Hz) of a proton at the tertiary carbon split
by two methyl groups was easily identifiable. The C NMR spectrum has the

following identifiable primary (8 177.2, 79.4, 71.4, 39.4, 34.2, 28.7, 23.5, 22.03,

20.5, 19.05, 16.7) and secondary (& 178.1, 79.8, 70.03, 40.1, 34.6, 28.3, 22.9,

22.3,20.5, 19.06, 16.7) half-ester signals.
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In the IR spectra of the half-esters the following peaks are of importance: a

wide OHg, maximum (3400-3500 cm‘l), a split, intensive C=og,, at 1700 cm"l,
and two C—Osr maximums between 1100 and 1300 cm”'. The IR spectrum also

shows regioisomers with a characteristic area on the spectrum, namely the split,
intensive C=Og, maximum at 1700 cm”', regardless of whether a straight or

branched chain aldehyde is used for the synthesis.
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ÜMBERESTERDUMINE KUI UUS ETAPP ALDOOL-TIŠTŠENKO
REAKTSIOONIS

JanekPETERSON, Heiki TIMOTHEUS jaUno MAEORG

Aldool-TistSenko reaktsiooni teine etapp kulgeb 6 + 6 bitsiiklilise aktiveeritud

kompleksi kaudu ning selle tulemusel moodustub esimesena sekundaarne pool-
ester. Sekundaarse poolestri iimberesterdumist primaarseks voib aga vaadeldakui

uut, kolmandat etappi aldool-TistSenko reaktsioonis.
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