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Abstract. Correlations between 18 parameters expressing acidity, basicity, and polarity for 66

solvents were calculated. Four mutually independent parameters with clear physico-chemical
meaning, gas phase acidity (deprotonation enthalpy, DPE), gas phase basicity (proton affinity, PA),

polarizability (P = (n®- 1)/(2n* + 1)), and squared Hildebrand’s parameter (8*,;) were selected

for a multiparameter equation. Correlations of rate logarithms for 39 reactions at metal centres

with this equation and, for comparison, equations proposed by Koppel and Palm and by Kamlet and

co-authors were carried out. In most cases the new equation described kinetic data satisfactorily;
however, more correlations with different data are needed to prove its general validity. Correlations

were affected by insufficient number of PA and DPE values. Absence of the traditional acidity
parameter did not cause weaker correlations. Possible interpretations of the parameters in the new

equation were proposed.

Key words: solvent effects on kinetics, multiparameter equation, organometallic chemistry, metal

complex chemistry.

INTRODUCTION

Multiparameter equations
The most remarkable success in quantitative description of solvent effects on

the kinetics and other physico-chemical properties has been gained using linear

free energy relationships [l] with multiple mutually independent empirical and

physical parameters expressing liquid-phase conditions in terms of distinctive

properties (acidity, basicity, and polarity) of individual solvents [l-3].
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A four-parameter equation was proposed by Koppel and Palm [2]. In this

equation the specific and nonspecific interactions between solvent and solute are

separated:

A=A,+yY+pP+eE+bß,

where A 1s the value of a solvent-dependent physico-chemical property; Ay is its
value for the gas phase; Y = (¢ — 1)/(¢ + 2) and P = (n 2 — 1)/(n2 + 2) are

nonspecific parameters characterizing solvent polarization and polarizability,
respectively. According to classical electrostatic theory, E = E(30)-25.10-
14.84 Y —9.59P, where E1(30) is Reichardt's parameter and B = Avgy (solvent
shifts of the ir stretching frequencies of the OH-band in phenol or, earlier, of the

OD-band in MeOD) are specific parameters, measuring Lewis acidity and

basicity, respectively. Lowercase letters designate the susceptibilities of a

reaction to the respective parameters.
Another equation was proposed by Kamlet et al. [3]. Their equation uses

statistically averaged parameters from several electronic spectra of solvatochromic

indicators:

XYZ = XYZ o+ s(* + dd) + ao.+ b + hdy+ ek,

where o, B, and m* are parameters for hydrogen bond donicity, hydrogen bond

acceptivity, and polarity, respectively; dy is the Hildebrand solubility parameter;
d is polarizability correction term; and & is discontinuous co-ordinate covalency
parameter; s, d, a, b, h, and e are susceptibilities of a reaction to the respective
parameters.

A three-parameter equation was proposed by Mayer (cited in [l]:

AAG = aADN + bAAN + CAAGvap,

where AG represents Gibbs energy change in the solvent, DN and AN are

parameters for Lewis basicity and acidity, respectively; AG,,, is Gibbs energy

change of vaporization of the solvent. These are all expressed in reference to

acetonitrile. The a, b, and ¢ terms are susceptibilities of a reaction to the

respective parameters.

Generally, one or more terms drop out from a multiparameter equation due to

their statistical insignificance. If a parameter has a physical meaning and

describes the solvent effect to a great extent, it is believed that the respective
physico-chemical interactions are responsible for different solvation of reactants

and activated complexes in chemical reactions.

In several cases, only parameters derived from factor analysis (FA) or

principal component analysis (PCA) are used in multiparameter approaches.
These describe different data surprisingly well if the initial parameters are properly
chosen, though they are unevenly associated with certain physical interactions.
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Nevertheless, it can be concluded on the basis of FA and PCA that the number

of parameters needed for the description of solvent effects on physico-chemical
properties is small, most likely equal to three [4]. Though, by another well

motivated opinion, nine parameters are needed [s]. For example, instead of five

basicity-dependent properties of 22 organic non-hydrogen bond donor (non-

HBD) solvents PCA gives only two principal components, which describe over

95% of the information. One is colinear with the gas phase proton affinity once

corrected for the enhanced (molecular) polarizability effect, the other correlates

with electrostatic properties [6]. For more examples, see references [l, 4].

Solvent effect on the reactions with metal compounds

Strong and often unpredictable solvent effects on reactions at metal centres

make their investigation and description intriguing though highly complicated.
The structure of reactants can be very different in different solvents, thus making
the reaction rates in them incomparable. In many cases the reaction mechanism is

not clearly stated, allowing for the possibility that different processes are

preferred in different solvents. Organometallic compounds often form dimers and

other self-associates, particularly in inert solvents. Inorganic salts form solvated

separate ions, solvent-separated ion pairs or contact ion pairs, triplets, etc. Most

solvent parameters characterize pure individual solvents. Interactions between

metal compounds and donor solvents are usually strong, HBD or HBA (hydrogen
bond acceptor) ability and electrostatic properties of a solvent can be greatly
influenced by a polar solute. A partially ionic metal compound can associate with

donor or acceptor solvent molecules or break the structure of amphiprotic
solvents. A solvent can simultaneously be a reactant, a substitute of a reactant, a

competitor, a catalyst, and a reaction medium.

Petrosyan [7] found solvent effects on organometallic chemistry to be very

complicated and depend on several factors: the type of reaction under

investigation, the nature of the organometallic compound and the substrate, their

solvation, the solvation of the transition state, and the polarity of the solvent.

Hydroxylic solvents can form complexes with reagents both by the solvation of

metal atoms and by means of intermolecular hydrogen bonds. In nonpolar
solvents some reactions can be substantially catalyzed by the polar products,
which is explained by the increasing polarity of the medium [7]. A few attempts
have been made to describe solvent effects on organometallic and metal complex
chemistry by multiparameter equations. On the basis of the short reaction series

conclusions cannot be drawn with absolute certainty; however, correlations may

offer some valuable information on the reaction mechanism. In several studies

[B—l2], single rate logarithms have been correlated with linear and nonlinear

multiparameter equations. There is practically no extensive review of the

quantitative description of the reactions at metal centres by multiparameter
equations.



80

METHODS

Correlation analysis in this work was performed by Statgraphics™ Version

5.0. All correlations were made at confidence level 0.95. Kinetic data on the

reactions at metal centres in at least five individual solvents were investigated.
Electrochemical data and data where the estimated mechanism (in terms of the

order of reaction, solvation number, complex geometry, or reaction pathway) was

very different in different solvents, as well as data on reactions in complicated
systems with many participating reagents and diffusion-controlled rate constants,

were excluded. Correlation coefficients between solvent parameters in Table 2

were calculated by procedure Q. Multivariate Methods 1. Correlation Analysis.
Correlations between natural logarithms of reaction rates or similar data and

the multiparameter equations in Table 3 were calculated by procedure
K. Regression Analysis 3. Multiple Regression, choosing between different

expression possibilities by comparing (adjusted for degrees of freedom) squared
multiple correlation coefficients (R%), standard errors (s), significances by
Student's #-test, absence or presence of parameter values, and Durbin—Watson

characteristics critically, considering results of procedures Q. Multivariate

Methods 1. Correlation Analysis and K. Regression Analysis 4. Stepwise
Variable Selection. In most cases, only significant parameters and constants

(p<0.05) were considered descriptive.

BRIEF CHARACTERIZATION OF REACTIONS

The following reactions were considered in this work:

Reactions with M—C bond cleavage:
1. k of reaction between dipropylmagnesium and pinacolone (solvents 40, 47,

49, 50, 52, 53, 54, see Table 1) [l2]
2.r at 298.2 K as relative rate of destruction of cyclohexylmercury

perchlorate (3, 13, 16, 21, 27, 43, 60) [l3]

3.k, M™'s™) at 293.2 K of (phenylmethyl)mercury chloride iodolysis (in the

presence of cadmium iodide catalyst) (5, 10, 11, 13, 16, 27) [l3]

4-9.k, (M's™) of alkyltin iodolysis, tetramethyltin, tetrapropyltin,
ethyltrimethyltin, butyltrimethyltin, dimethyldipropyltin, and triethylmethyltin,
respectively (11, 16, 21, 39, 45) [l4]

10. AG” (kcal mol™) at 293.2 K of tetramethyltin + methyltin trichloride

substitution (AG™ for two nonpolar solvents excluded because of different

mechanism) (5, 10, 11, 12, 21) [7]
Other organometallic reactions:

11.r at 307.2 K as relative rate of substitution of trimethyltin chloride +

methylthiotrimethyltin (37, 39, 45, 48, 57) [ls]
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12. ky (s7') at 333.2 K of reductive elimination of ethane from cis-

bis(diphenylmethylphosphine)dimethylpalladium(ll) (deuterated 5, 11, 21, 57,
58) [l6]

13.k, M's™") at 293 K of reaction with methyl iodide + cis-

bis(diphenylmethylphosphine)dimethylpalladium(ll) (deuterated 5, 11, 21, 47,

57, 58) [l6]
14. k, M's™") at 403.2 K of substitution between trimethylphenoxytin and

methylsulphonyl chloride giving trimethyltin chloride (11, 17, 39, 42, 54) [l7]
Reactions of nickel complexes:
15.ks M's™") at 298.2 K of formation (solvated) nickel(l)-2,2’-bipyridyl

complex (3, 4,5, 10, 11, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 34)

[lB]
16., 17. kr (M"'s—l) and kg (s™) at 293.2 K of formation and destruction of

(solvated) nickel(l)-thiocyanate monocomplex, respectively (3, 5, 10, 11, 13)
[l9]

18. k¢ (M's™) at 298.2 K of formation (solvated) nickel(ll)-isoquinoline
monocomplex (3, 10, 11, 13, 16) [2o]

Reactions with porphyrins:
19. AG” (kcal mol™) at 313.2 K of formation of copper(ll)-tetraphenylporphine

complex (5, 10, 14, 40, cyclohexanone, propanoic acid) [2l]
20. ke M's™") at 298.2 K of formation of copper(ll)-chlorophyll complex

(10, 13, 16, 21,31, 33, 38, 43, 44, 60) [22]

21., 22. ks M 's™) at 298.2 K of formation of cadmium(ll)-tetraphenyl-
porphine and cadmium(ll)-tetramethoxytetraphenylporphine complex, respectively
(16, 23, 27, 31, 32, 36) [22]

Reactions with complexes of platinum group metals:

23.kyy, (s) at 298.2 K hexabromodiplatinic acid dianion reactions with

pyridine (4, 9, 10, 11, 12, 15, 18, 21, 25, 28, 44) [9]
24. k, (M's™) at 2982 K of carbonyl substitution in (m3-nitrocyclo-

pentedienyl)(dicarbonyl)rhodium(l) with triphenylphosphine (11, 13, 39, 40, 57,
61, 65) [23]

25.-30.k,; (sD:at 3032 K of ring closure nucleophilic substitution

mer-(Rh(IIML(LYCLX)'™ into trans-(Rh(II)L,CI)'+X", where X" =

(pyridine+ClO4), N3, SCN, SeCN, or NO, and backward (ring opening)
reaction where X" =NO,, respectively, L and L' = (o-dimethylamino-
phenyl)dimethylarsine,-NAs and -As, respectively (13, 16, 23, 24, 30, 34),
(8, 13, 16, 23, 30)'(8, 13, 161'23) 24, 30) (8, 13, 16523, 30), (13, 16, 25,24, 30),

(13, 16, 23, 24, 30), respectively [ll]
Miscellaneous:

31.k; (s7 at 298.2 K intramolecular isomerization of pentaamminenitrito-
cobalt(ll) into pentaamminenitrocobalt(ll) (1, 2,3, 5,6, 7, 10, 11, 13, 16, 20, 21,
33, 40, 41, 44) [lo]
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32., 33.ks (M7's™) and k; (s') at 298.2 K of Na(l) and 4,7,13-trioxa-

-1,10-diazabicyclo[B,s,s]eicosane complex (4, 10, 11, 13, 21, 33) [24]
34. r as relative rate of reaction of N-phenylethanamide with sodium (40, 41,

49, 51, 56, 57, 58, 61) [2s]
35.k, (M's) at 2982 K of ring closure reaction of (1,10-

phenanthroline)(pentacarbonyl)molybdenum complex (40, 45, 46, 57, 58) [26]
36.,37.k, (M's™") at 2982 K of substitution of solvent in (solvent)

(pentacarbonyl)chromium complex by 1-hexene and piperidine, respectively
(45, 46, 57, 58, 64) [27]

38.k, (M's™') at 298 K of substitution of solvent in (solvent)(n6-benzene)
(dicarbonyl)chromium complex by carbon monooxide (61, 62, 63, 64, 66) [2B]

39. k (M's™") at 303 K of oxidation of ethanol to ethanal by pyridinium
bromochromate (5, 10;12; 21, 25,28, 34, 35,'39, 40, 41, 43, 44, 48, 55, 57, 58,

60, 61) [B]

1 N-MeF 951.8 0.2059 360.4 207.6

2 Formamide 1499.0 0.2109 359.9 202.6

3 H0 2408.4 0.1706 390.8 166.5

4 Propylene carbonate 762.7 0.2016

5 DMSO 600.0 0.2009 366.6 213.9

6 — 1,2,3-P(OH)» 0.2196

7 Sulpholane 751.0 0.2222

8 1,2-Et(OH), 887.0 0.2059

9 DMA 533.9 0.2079 374.9 2194

10 DMF 598.1 0.2055 399.0 214.2

11 MEGN 619.3 0.1749 342.9 191.5

12 PhNO, 532.2 0.2433 354.2 193.4

13 MeOH 910.2 0.1690 379.2 185.6

14 HMPT 0.2143 227.4

15 EtCN 503.2 0.1828 375.0 194.1

16 — EtOH 715.1 0.1812 376.1 190.4

17 ° PhCN 0.2357 383.2 199.5

18 PrCN 445.0 0.1896 195.4

19 Acrylonitrile 0.1920 371.2 189.7

20 AcOAc 0.1917

21 Me,CO 413.6 0.1804 368.8 198.5

22 ° Me,;PO4 0.1940 212.0

23 PrOH 626.6 0.1899 374.7 192.6

Table 1

Values of squared Hildebrand’s parameter, B%y; polarizability, P; deprotonationenthalpy,

DPE; and proton affinity, PA, of the solvents represented in reactions considered in this work.

Solvents are given in the order of descending value of Kirkwood function
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No. PA

24 1PrOH 585.6 0.1872 374.1 194.2

25 EtMeCO 382.1 0.1876 370.2 201.4

26 iBuOH 534.5 0.1936 374.7 192.4

27 BuOH 565.6 0.1949 373.7 193.2

28 PhMeCO 0.2380 362.4 207.9

29 sBuOH 543.5 0.1944 372.9 195.0

30 2-(MeO)-EtOH 565.2 0.1960 373.8

&l . PiOH 521.4 0.1986 373.9

32 HexOH 370.0 0.2012 372.2

33 Pyridine 491.9 0.2301 391.9 223.9

34 tBuOH 490.6 0.1908 373.3 198.8

35 — 1,2-EtCb 431.6 0.2101

36 OctOH 446.6 0.2051 372.0

37 — 1,2-PhCb 440.9 0.2420

38 Ovinoline 453.1 0.2616 384.3 227.6

39 MeCb 441.1 0.2034 374.6

40 THF 387.3 0.1969 200.8

41 Monoglyme 345.2 0.1879 204.9

42 MeBr, 52257 0.2394

43 AcOH 398.0 0.1852 351.9 191.8

44 EtOAc 357.8 0.1853 202.6

45 — PhCI 396.8 0.2343 387.2 184.6

46 PhF 361.7 0.2176 393.9 185.0

47 PhNMe, 397.2 0.2439 226.0

48 CHCh 381.4 2.2105 357.1

49 PhOMe 425.8 0.2323 203.9

50 EtLO 237.1 0.178 201.9

51 PhOEt 384.0 0.2296

52 . iPn0 210.0 0.1837 207.8

53 Bu,O 250.7 0.1948 203.7

54 MeOMeOMe 0.1776

55 CS, 446.0 0.2623 164.4

56 1,2-PhMe, 355.2 0.2277 195.9

Sk, PhMe 352.1 0.2261 380.8 192.6

58 PhH 373.1 0.2276 400.7 184.8

59 CCk 330.0 0.2150

60 Dioxane 446.0 0.2028 195.3

61 c-Hexane 300.0 0.2042 403.7 169.0

62 Dodecane 267.8 0.2025

63 Decane 260.6 0.1986

64 Heptane 245.6 0.1908

65 Hexane 235.4 0.1862

66 Pentane 224.3 0.1799

Table I continued
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RESULTS AND DISCUSSION

Solvent parameters

Correlations between parameters (Table 2) are comparable with those [4] with

a different set of solvents. Universal parameters Y and E7(30) correlate with

almost all other parameters. Acidity parameters, except deprotonation enthalpy
(DPE), are mutually highly correlated, similarly to basicity parameters. Polarity
parameters |1 and 7* tend to correlate with basicity, while P and &’ tend to

correlate with acidity parameters. The most optimal single polarity parameter
seems to be v, independent of AN and DN, proton affinity (PA) and DPE, o and

B. The rest of acidity parameters (E, AN, o) do not correlate with DPE.

Correlations of dipole moment with both DPE and PA may be meaningful
because all three parameters are measured in the gas phase. The extended

parameter DN (with more values for HBD solvents) correlates with certain

acidity and polarity parameters. Negligible correlations between A and all other

parameters, except those expressing basicity, may need attention. However, the

number of known values is insufficient, and the parameter is expressed in nm,

not in cm™, which would be proportional to the energy unit. Reflection of

interactions on parameters does not depend on the exact definition and critical

evaluation of the model process only. Relations between the nature of each single
solvent and parameter values for it are much more complicated. The basic

properties of a protic (HBD) solvent are evidently influenced by the strength of

hydrogen bonds and vice versa, so that correlations between basicity and acidity
parameters are probably not absolutely accidental or caused because parameters
describe electrostatic interactions partially. Values of empirical parameters are

often unknown for experimental reasons (e.g., low solubility of a model

compound in a respective solvent) or affected by steric hindrances and secondary
processes. However, it is particularly hard to set a border between polarity and

acidity parameters. Some values of polarity parameters indicate the influence of

hydrogen bonds and other specific interactions. Some comparable values of

acidity parameters for less polar acidic solvents and polar solvents without

considerable acidic properties cannot be interpreted in terms of specific
interactions. Some values of acidity parameters for C-H acids (e.g. ketones)
seem to be underestimated.

Selection of parameters for a multiparameter equation
To describe possibly more data of very different reactions there is no need to

search for similar processes (which is often useful in the case of a single
reaction) or universal parameters expressing the share of all possible interactions

(which 1s optimal when describing processes by a single parameter), but it is

essential to find fundamental orthogonal parameters, each expressing a single
physical or chemical interaction. Correlations between parameters depend on the

set of solvents. However, it seems (see Table 2) that interdependence of many
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parameters of very different character is not accidental, but associated with the

intricacy of interactions in the liquid phase and, consequently, with the

impossibility to obtain an absolutely clear interpretation for the parameters. Also,
correlations may reveal seeming independence of some parameters, because the

parameters were measured in a limited group of solvents cnly.
To obtain specific parameters free from the influence of electrostatic

interactions and solvent association, some of them are derived from model

processes in inert media, not in bulk solvents. The most inert medium is the gas

phase. Thus, it seemed reasonable to take the next step and use specific
parameters in a multiparameter equation, measured in the gas phase. Gas-phase
acidity (DPE) and gas-phase basicity (PA), though believed to be affected by
molecular polarizability, express the most intrinsic acidic and basic properties.
Nowadays, a number of their values are available with a sufficient precision. The

properties of solvent molecule in the liquid phase, which are different from those

in the gas phase, can be expressed by two polarity parameters, 8% and P. All four

parameters are mutually independent. Thus, the new equation is

A = Ao+ hd%y + pP + aDPE + bPA.

The coefficients for DPE (a) and PA (b) describe the sensitivity of the reaction

to solvent acidity and basicity, the specific properties of a single molecule, if it is

not influenced by other molecules. The coefficient for P (p) describes the

sensitivity of the reaction to solvent polarizability, the nonspecific property of a

bulk solvent, expressing mainly short-distance electrostatic interactions. The

coefficient for 8% (h) describes the sensitivity of the reaction to the mean liquid-
phase polarity, mainly of nonspecific character, as well as the influence of other

solvent molecules on the specific properties of a solvent molecule.

Evaluation of the validity of the new multiparameter equation

Correlations between kinetic data and three multiparameter equations were

compared (see Table 3) in order to obtain a more adequate picture. For Kamlet—

Taft's equation, only four parameters were included; however, the independence
of cohesive pressure and other parameters may seem doubtful. For Koppel-
Palm's equation, the functions for calculating Y and P are slightly different from

those commonly used in original work. The E values used here are taken mainly
from reference [33], the others are calculated directly from Er(3o) — 25.10 —

14.84(e — 1/(e + 2) — 9.59(n* — 1)/(n* + 2). Also, B from the ir stretching
frequencies of phenol (not MeOD) was used, since it seemed to be a better

selection for obtaining more experimental values for HBD solvents.

Relatively weak correlations between the new equation and data from

reactions 14, 15, 20, 23-30, 34, and 39 were evidently caused by the absence of
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PA values. Correlations with other multiparameter equations confirmed this

supposition. Unknown DPE values seemed to cause weaker correlations with

data from reactions 15, 27, and 28. This suggests that the main reason for

inadequate results was the absence of parameter values. In most other cases, the

importance of a (basic or acidic) specific interaction, suggested by other

equations, was confirmed also by the new equation. No comparison revealed the

preference of traditional acidity parameters over DPE. For reactions 10, 11, 13,

35, and 38 all three multiparameter equations suggest a similar mechanism.

The results of the correlations are not purely formal. Influences of the

basicity, acidity, and polarity of the solvent, suggested by the significance of a

respective parameter, are generally consistent with mechanisms proposed by
authors of original works. Negative b forreactions 16, 18, 20, 35, and 37 reflects

decreasing, and positive b for 17 and 33 increasing nucleophilic solvation in the

transition state relative to the ground state. In reactions 4-9, the estimation of

highly polar activated complex R4M"1, is supported by positive k. In reaction 14,
a slightly polar four-centre transition state is proposed, which is in accordance

with positive p. In reaction 23, the polar solvent is supposed to accelerate the

cleavage and the nucleophilic solvent to compete with pyridine, consistent with

positive 4 and negative b. In reaction 31, electrophilic solvation of the nitrito

group, nucleophilic solvation of the ammines, and general stabilization of

charge-separated transition state are supposed to accelerate the intramolecular

isomerization, which is consistent with positive a, b, and h. Both the cation-

solvating power and the polarity of the solvent are supposed to support the

mechanism of hydride-ion transfer via planar, cyclic, and symmetrical transition

state for the decomposition of the ester intermediate in reaction 39, which ils in

agreement with positive b and A.

The results of correlation of the equation suggested in this work contradict the

estimated mechanism of reaction 2, where nucleophilic solvation of the metal

centre is supposed to stabilize cyclohexylmercury perchlorate. In reaction 10,
where nucleophilic solvation of the associate is supposed to decrease the rate,

and in reaction 34, where nucleophilic assistance in polarizing the N-H bond

(as a rate limiting step) is considered essential, correlations with all three

multiparameter equations indicate the opposite.
The fact that the new multiparameter equation seemed to describe a number

of reactions at metal centres satisfactorily, is encouraging. Nevertheless, the

general validity of this model is disputable, because more correlations with

different data are needed to prove it. Especially crucial is the question whether

this equation can describe the processes associated with solvent hydrogen bond

donicity. The application area is limited because of the absence of PA and DPE

values for certain solvents like aliphatic hydrocarbons and their halogen
derivatives, propylene carbonate and sulpholane, and DPE values for ethers and

esters.
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N o|1% ]|p| 106[ 105 ]r ]
1 -16.1+3.3 30:3+5:3 0.9100 0.

2 7.8+2.2 -20.915.5 3710 0.9319 0.:

3 — -5.59+0.52 -111.2+2.2° — 2.65+0.26 7.62+0.26 0.9986 Os

4 19.4+3.5 -68.1+9.6 0.9419 1.

5 10.8+5.0% -54x14 0.9096 1.

6 14.7+4.4 -55+12 0.8823 1

7 15.1+4.6 -56+13 0.8734 1.

8 16.8+3.8 -58+11 0.9068 114

9 16.4+3.8 -56+11 0.8976 1.

10 —2.9+1.0 15.1+1.9 0.9998 0.

11 -7.9+£1.3 21.8+3.3 0.9149 0.

12 22.0+6.2 -6.26+0.64 0.9477 0.:

13 14.8+2.7 —4.00+0.34 0.9931 0.

14 36.0+2.4 0.9830 1.

15 47.3+3.2 0.9250 2.

16 7.67+2.1 -0.903+0.017 1.491+0.056 -0.609+0.062 0.9995 O

17 -32.12+0.91 7.947+0.074 —-5.31+0.24 = 93.0320.27-. .0.9997 O

18 57.6x1.2 404.245.6 -19.65+0.39 -25.30+0.39 0.9993 OL

19 -38.3+7.2 27.3+3.4 = 0.9261 0.:

20 42.4+4.9 -5.0+1.6 -12.0+1.5 — 0.9673 04

21 11.8+1.2 -2.05+0.18 0.9761 0.2

22 18.07+0.63 -2.59+0.10 0.9944 0.1
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23 39+1.2 -2.07+

24 131.8%4.1 -21.56+0.68 -25.66+

25 -2.066+0.018

26 -16.5%1.7 9.5+2.2

27 ° —-573+114 202+60 1.41+0.28

28 —14.34+2.0 8.6+2.7

29 10.4+2.1 —3.84+0.38

30 7.3+1.4

31 -16.7x4.2 3.50+0.44 =50+20 -2.53+0.67 13.1%

32 -23.16+0.47 —6.234+0.087 -129.4x1.0 17.63%0.17

33 3.29+

34 15.90+0.51 —-69.8+2.4

35 187+37 —18.0+

36 54.8+3.9 -201%18

37 76.3+2.6 -159.4+6.3 -15.7+.

38 1.69+0.33 36.5+2.2
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METALLIÜHENDITE KINEETIKA SOLVENDIEFEKTIDE
KVANTITATIIVNE KIRJELDUS NELJAPARAMEETRISE VÕRRANDI

ABIL

Aimar KUKK

On arvutatud 66 solvendi happelisust, polaarsust ja aluselisust véljendavate
parameetrite korrelatsioonid. Mitmeparameetrilise voOrrandi tarvis on vilja
valitud neli omavahel sdltumatut parameetrit: happelisus gaasifaasis (deproto-
neerimisentalpia, DPE), aluselisus gaasifaasis (prootonafiinsus, PA), polari-
seeritavus (P = (nz— 1) / (2n2+ 1)) ning Hildebrandi parameeter ruudus (52H).
Metallitsentrite juures toimuva 39 reaktsiooni kiiruse logaritmid on korreleeritud

saadud vorrandiga ja vordluseks Koppeli-Palmi vorrandiga ning Kamleti ja
kaasautorite vorrandiga. Uus vorrand kirjeldab kineetilisi andmeid enamasti

rahuldavalt. Siiski oleks vorrandi iildise kehtivuse tdestamiseks vaja rohkem

korrelatsioone erinevate andmetega. Korreleerimistulemusi mdjutas PA ja DPE

vadrtuste ebapiisav hulk. Traditsioonilise happelisuse parameetri puudumine
vorrandist ei pdhjustanud ndrgemaid korrelatsioone. On vilja pakutud uue

vorrandi parameetrite tdlgendusvoimalused.
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