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It is known that short-term heating of sarcoplasmic reticulum (SR)
vesicles at 42—45°C leads to a sharp decrease of Ca-pump efficiency
without any effect on the Ca-ATPase hydrolytic activity [*]. The decrease
of the pump efficiency is connected with the release of accumulated Ca2+
from the vesicles as a result of a strong increase of the membrane
permeability for this ion [2]. Analysis of the phenomenon called thermo-
uncoupling may be useful for understanding the possible pathways of
CaZ+ release from SR. The appearance of such new pathways for Ca%*t
release from SR can be relevant to the regulation of Ca%t exchange in
muscle tissue under normal and pathological conditions.

The formation of Ca-permeable channels between Ca-ATPase molecules
at enzyme clusterization is one of the possibilities of the Ca2?* release
from SR [3]. It has been shown earlier that the Ca-pump thermo-
uncoupling is connected with the decrease of the SR lipid bilayer micro-
viscosity that can induce protein oligomerization [%%]. As shown else-
where, thermotreatment of SR vesicles decreases the membrane surface
potential that seems to reflect clusterization of the membrane proteins [3].
However, all approaches used previously have given only indirect informa-
tion about the Ca-ATPase protein arrangement in the SR membranes.
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Bifunctional chemical cross-linking of target groups of the neighbour-
ing protein molecules can be used for a more direct investigation of the
protein arrangement in biological membranes. We have used this ap-
proach in studying the Ca-ATPase oligomeric state in control and thermo-
treated SR preparations. Cupric o-phenanthroline [¢] and 1,5-difluoro-
.2 4-dinitrobenzene (DFDNB) [7] were used in our study. These
compounds cross-link the proteins located in a close proximity: cupric
o-phenanthroline induces the formation of S-S-bridges, and DFDNB
interacts with the SH-groups the distance between which is about 5 A.

Electrophoresis of the control and thermotreated SR preparations in
the presence of SDS revealed distinct differences between them (Fig. 1).
In the thermotreated SR preparations some new protein bands with
molecular weights 140, 240, 280, and 310 kDa appeared, and a significant
amount of the protein did not enter the gel. The appearance of the
140 kDa protein band seems to be connected with intramolecular cross-
linking of the Ca-ATPase protein: As it is known from literature [%],
intramolecular cross-linking of Ca-ATPase protein changes its electro-
phoretic mobility.

The protein bands with molecular weights 240, 280, and 310 kDa in
Fig. 1 probably correspond to dimers and trimers of Ca-ATPase. The
differences in their electrophoretic mobility seem to be connected with
the different number of intramolecular bonds in individual Ca-ATPase
molecules forming these di- and trimers. The Ca-ATPase oligomers with
the higher molecular weights did not enter the gel.

A study of the nature of the intra- and intermolecular bonds form-
ing after thermotreatment showed that SDS treatment (2 min at 100°C,
15 min at 60°C, or 60 min at 37°C) had no effect on the mobility of the
new protein bands, neither did the addition of B-mercaptoethanol (5 mM)

or dithiotreitol (5 mM).
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Fig. 1. SDS-gel electro- Fig. 2. Rate of cross-linking of Ca-ATPase with cupric

phoresis patterns of sar-

coplasmic reticulum vesi-

cles. 1 — control vesi-
cles, 2 — thermotreated
vesicles, 38 — control

vesicles incubated 2 min
with cupric o-phenanth-
roline,

o-phenanthroline by SDS-gel electrophoresis. /I — control
vesicles, 2 — thermotreated vesicles. The standard assay
for cross-linking contained 100 mM MOPS (pH 7.2),
1 mM CaCl;, 0.1 mM CuSO,, 2 mg/ml protein of sarco-
plasmic reticulum, 0.3 mM o-phenanthroline at 25°C.
The reaction was stopped at different incubation intervals

* by 1 mM EDTA, 16 mM N-ethylmaleimide, and 10 mg/ml

SDS-Na; Electrophoresis was carried out according to
Laemmli [?].
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Addition of B-mercaptoethanol and dithiotreitol in the above-mentioned
concentrations into the medium before thermotreatment resulted in a
nonsignificant decrease of the intensity of the high-molecular weight
protein bands. However, incubation of the thermotreated preparations in
the presence of 50 mM B-mercaptoethanol at 100 °C decreased significantly
the amount of Ca-ATPase oligomers (data not shown). Therefore, we
conclude that thermotreatment resulted in covalent cross-linking of the
Ca-ATPase protein; the bonds formed seem to be S-S-bridges.

Fig. 1 shows that incubation of the control SR vesicles with the cross-
linking agent cupric o-phenanthroline results in the appearance of high-
molecular weight protein bands which are practically identical in mobil-
ity to those in the thermotreated preparations. Comparison of the cross-
linking process in the control and thermotreated preparations showed
a significant difference in the kinetics of cross-linking. Thus, in the
thermotreated SR vesicles the Ca-ATPase protein is already partially
cross-linked before the addition of cross-linking agents. After 30 min
incubation with cupric o-phenanthroline the amount of Ca-ATPase mono-
mer decreased by 85% (Fig. 2) and after 90 min incubation with DFDNB,
by 909% (data not shown). Under the same conditions, the amount of
Ca-ATPase monomer in the control SR vesicles decreased by 309 after
30 min incubation with cupric o-phenanthroline (Fig. 2) and by 309%
after 90 min incubation with DFDNB (data not shown).

Analysis of the minor protein contents after electrophoresis showed
that thermotreatment did not change their amount. Therefore, these low-
molecular weight proteins obviously did not participate in the formation
of the high-molecular weight oligomers consisting only of Ca-ATPase
molecules.

From the obtained data we can make the conclusion that thermo-
treatment of SR vesicles induces a strong oligomerization of the Ca-
ATPase protein and part of the Ca-ATPase molecules acquire inter- and
intramolecular covalent bonds. We suggest that clusterization of the
Ca-ATPase protein in SR membranes on thermotreatment is the main
reason for the sharp increase of the membrane permeability for Ca?+ ions,
i.e. for thermouncoupling.
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