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Analysis of electrical properties of biological and model membrane
surfaces is one of the new promising approaches to the study of the
lipid and protein arrangement in bilayer. Estimation of the influence of
different factors on surface potential can give us valuable information
about membrane structure changes because protein hydrophilic regions
play a key role in the formation of the surface charge, and net surface
potential strongly depends on the density and distribution of individual
charged groups on the membrane surface.

Sarcoplasmic reticulum (SR) vesicles isolated from rabbit white
skeletal muscles were used in this investigation. As it has been shown
earlier ['], short-term heating of SR vesicles at 42—45°C drastically
decreases the efficiency of Ca-pump operation without any visible effect
on enzyme hydrolytic activity: the so-called uncoupled Ca-pump 15
obtained in which ATP hydrolysis by Ca-ATPase is not connected with
Ca?+ accumulation into SR vesicles. It was shown also that the increase
of SR membrane permeability for Ca** was the main reason for thermo-

uncoupling [*]. In addition, thermotreatment affects the physico-chemical
properties of lipid bilayer that, probably, can change the electrical
properties of the membrane surface. Taking this into account we have
studied the effects of short-term thermotreatment on the membrane
surface potential as well as the influence of bivalent cations on the

Ёигіасе electrical properties of the control and heat-treated SR mem-

ranes.
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A number of different experimental approaches and tools can be used
for studying electrical properties of biological and model membranes,
c.g. potential-sensitive spin probes [%?], fluorescent probes [*s], pH-
sensitive dyes [®], and membrane conductance measurements [>7].

Quantitative analysis of the effects connected with the electro-chemi-
cal properties of membrane surface can be done on the basis of the

Gouy-Chapman theory [®]. The relationship between the bulk concen-

tration of a charged species, Cy, the concentration of this charged species
next to a charged surface, Cs, and the fixed charge surface potential, W,
is given by the Boltzmann equation:

Cs=Coexp (—ZFY/RT), (1)

where Z is the charge of the species considered, F — the Faraday constant,
R — the gas constant, and T — the absolute temperature [#]. The pH
value of the solution near the membrane surface (pH,) differs from pH
in the bulk water phase (pH;), апа а{ the equilibrium at 25°C these
values are connected with the following relationship which has been
derived from the Boltzmann equation [?]:

pH;=pH;+W¥/60v. (2)

The surface potential of membranes can be studied also with the use

of the EPR method by measuring the distribution of charged spin-
labelled probes between the membrane and water phases ['°]. It has
been shown that the distribution of a probe between both phases can be

expressed as follows: _ |
k=Lb/Lm=xoexp(F‘l’/RT), (3)

where L, is the concentration of the probe in the water phase, L, —

concentration of the probe in the membrane phase, Ao — a constant which

depends on the chemical potential difference of the two phases [2].
In our investigation we used neutral red as a pH-sensitive dye and

the spin probe 4-(N,N-dimethyl-N-decyl)-2,2,6,6-tetramethylpiperidylam-
monium bromide (CATI10

The data obtained show that surface potential is different for the
control and thermotreated SR preparations (Table and Figure). As
can be seen from the Table, the surface potential of the thermotreated
membranes is less negative than that of the control ones. In order to
evaluate the contribution of lipids and proteins to the bulk surface

potential of SR membranes we have reconstituted Ca-ATPase protein
into artificial phospholipid liposomes. A crude preparation of egg lecithin

containing mainly phosphatidylcholine and a trace amount of phos-
phatidylethanolamine was used for reconstitution. The lipid composi-
tion of the liposomes was very close to that of SR membranes which
contain about 70% phosphatidylcholine, 20% phosphatidylethanolamine,
and small amounts of phosphatidylinositol, phosphatidylserine, di- and
triglycerides, and cholesterol.



155

* The surface potential has been calculated by Eq. (2) from the pH-measurements with
neutral red as a pH-indicator on the membrane surface. The assay medium consisted

о{ 2155 (r:nM imidazole, pH 7.0, 5 pM neutral red, | mg protein/m| or 0.5 mg lipid/ml
a °C.

As can be seen from the Table, artificial liposomes have practically
no surface charge. However, incorporation of Ca-ATPase protein into
these liposomes leads to the appearance of a negative surface potential.
The absolute value of the negative surface potential of the proteo-
liposomes is about 10-fold lower than that of intact sarcoplasmic
reticulum membranes. This seems to be connected with the high lipid-
protein ratio in the reconstituted proteoliposomes (6:1 in the proteolipo-
somes versus 0.5:1 in native SR membranes). Therefore, we suggest
that Ca-ATPase protein makes the main contribution to the negative
surface potential of SR membranes.

To obtain additional information about the electrostatic properties
of the SR membrane surface we have studied the effect of Ca%* and

Mg?+ ions on their surface potential using control and thermotreated

preparations. The Figure shows that comparative titration of these

preparations by Ca?t ions gives different results: in the thermotreated

SR vesicles the surface charge is changed from negative to positive
values whereas in the control ones this parameter is changed from

negative to only neutral values,

Effect of Са?+ оп the surface potential of sarcoplasmic reticulum vesicles measured by
using pH-indicator neutral red.

I — thermotreated vesicles, 2 — control vesicles with ionophore A23187, 3 — control

vesicles. The assay medium consisted of 15 mM imidazole, pH 7.0, 5 pM neutral red,
1 mg protein/ml, 1 pM ionophore A23187/ml, temperature 25 °C.

Preparation | Surface potential
W, mV

Intact sarcoplasmic reticulum vesicles —96.4+4.2

Thermotreated sarcoplasmic reticulum vesicles —60.243.4

Liposomes . 0+2.2
Proteoliposomes —10.1%2.1

Surface potential values for different membrane preparations*
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Since neutral red is located in both the outer and inner monolayers
о! SR membranes [¢], the estimated values of surface charge are the

mean values of the potential on both sides of membrane. As the thermo-

treatment increased the SR membrane permeability for Ca%*+, the bind-

ing of this ion should take place on both the inner and outer membrane

surfaces. This seems to be the main reason for the changes of surface

potential from negative to positive values.
‚

For verification of this supposition we have used Ca-ionophore A23187.

Since this ionophore drastically increases sarcoplasmic reticulum mem-

brane permeability for Ca?+ we could expect some similarities between

the effects of Ca%+ on surface potential value of the control membranes in

the presence of A23187 and on that of thermotreated ones. Indeed, the

changes in the surface potential values of the control vesicles in the

presence of ionophore during titration by Ca?>+ were very similar 10

those obtained with the use of the thermotreated preparations (Figure).
In both cases the surface potential changed from negative to positive
values. Moreover, an addition of A23187 to the control vesicles after

their titration by Ca2+ resulted in a sharp jump of the surface potential
to positive values which were close to those in the thermotreated prepara-
tions. So, the titration of the control SR membranes in the presence
of A23187 and the thermotreated membranes gave very similar results.

The only difference was the initial value of the surface potential in the

absence of Ca?* which was less negative in the.thermotreated prepara-
tions.

The spin probe CATIO does not penetrate sarcoplasmic reticulum

membranes [l°]. The data obtained with the use of this probe also

revealed the differences in the initial surface charge values between the

control and the thermotreated SR membranes as well as in the char-

acter of the titration curves of these preparations by Ca?t (data not

shown).
The data obtained with the use of another bivalent cation — Mg* —

were in general very similar to those obtained with the use of Ca2t.

Thus, in our study we first measured the surface potential of SR
membranes and investigated the influence of different factors on it.
From the data obtained we conclude that Ca-ATPase protein plays the

main role in the formation of surface potential in е 5К membranes.
Thermotreatment of the membranes decreased their surface potential
value, probably, via the clusterization of Ca-ATPase molecules [!], and

drastically modified the effects of Ca%*t and Mg? ions on the surface

potential of the thermotreated SR membranes which may also be con-

nected with the Ca-ATPase protein clusterization as a possible reason

for the increase of membrane permeability for these ions.
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