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Abstract. Poly(A)-poly(U) is shown to bind (pU). (n=5) at low temperatures in
the presence of Mg2+ ions. The binding curve at 1°C in the Scatchard representation
is characteristic of cooperative binding and could be approximated by the following
parameters (according to McGhee and von Hippel): K=790, ©=36, n=44. It is
proposed that Hoogsten pairs are formed between the poly(A) strand of the
poly (A) -poly(U) and oligouridylic acids. Oligouridylic acids (n=5) could be consider-
ed specific ligands for adenine stretches in the RNA double helices.
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INTRODUCTION

In recent years a number of low-molecular weight compounds have
been found to exhibit different degrees of specificity towards particular
nucleotide sequences in double helices. The molecular mechanism under-
lying the specificity has been elucidated in several cases [*~*]. The three-
dimensional structures of the complexes have been established by X-ray
investigations [>7], and some general rules covering the nucleic acid
interactions have been drawn.

For single-stranded nucleic acids, sequence-specific ligands can be
prepared by making use of the property of the bases to form comple-
mentary base pairs, i.e. in order to have a ligand capable of binding
to a given sequence of nucleotides one needs nothing but to synthesize
the oligonucleotide which is complementary to the polynucleotide strand
under investigation [& °].

In the case of the double helix the problem is much more complicated.
These ligands must meet at least two conditions: (1) There must be
a possibility of arranging them into a regular spatial structure to fit
the double helix. This condition means that we must deal with 'polymers.
(2) There must be four different kinds of monomers as repeating units
in order to bind to four different types of base pairs. Only two different
monomeric units are needed when AT/TA base pairs are to be resolved
from GC/CG base pairs.
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One possibility of attaining the specificity towards the base pairs in
DNA follows from the structure of triple helices [%]. Oligouridylic
acid is expected to interact with the dA-dT (or A-U) sequences whereas
protonated oligocytidylic acid is expected to bind to the dG-dC " (or G-C)
base pairs from the major groove via the Hoogsten type of pairing. The
oligopyrimidines can be regarded as specific ligands capable of recog-
nizing the polypurine sequences in the double helices. The ligands of
this kind have been synthesized and shown to interact specifically with
the expected nucleotide sequences of DNA [#-13]. It is "believed that
triple helices could be induced in the homopurine—homopyrimidine
tracts of DNA [t—16].

In the present work we have prepared a series of uridylic acid oligo-
mers in order to determine the minimal length of (pU), capable of
forming a stable complex with ribopolymer poly(A)-poly(U). These
oligomers are expected to prefer the A-conformation which is an ad-
vantage in the formation of triple helices.

MATERIALS AND METHODS

(pU)n (n=3...6) was prepared by hydrolysis of poly(U) and was
shown to be pure chromatographically. Poly(A) 'and poly(U) were
annealed in 10 mM sodium cacodylate buffer, pH 7.0, containing 30
mM of NaCl at room temperature using poly(A) and poly(U) (SERVA).
Poly(dA) -poly(dT) was a product of Boehringer Mannheim GmbH.
Experiments were carried out in 1 mM cacodylate buffer, pH 7.0, con-
taining 10 mM NaCl and 10 mM MgCl,. The following extinction coef-
ficients were used for calculations: poly(A) — ex=6000 1-M—1.cm—1;
poly (U) — £2=9430 1-M—t.cm™; (pU)s — e2=9900 1-M—t.cm—;
poly (A) -poly (U) — e260=6655 1-M~t.cm~*; poly(dA) -poly(dT) — ess=
=6000 1-M—-t.cm~!; the difference between extinction coefficients of the
iree and bound oligo(U) under given conditions Ags=5520 1-M—1.cm—1.

UV spectra and temperature dependencies were recorded using a
Pye-Unicam SP8-150 spectrophotometer equipped with a SPX 876
Series 2 Temperature Programme Controller. The absorbance measure-
ments were performed in 0.1 cm cuvettes; both beams of the spectro-
photometer contained two cuvettes. To have the positive peak in the
difference spectrum, poly(A)-poly(U) and oligouridylic acid were
placed in the sample beam in separate cuvettes one after the other,
whereas the cuvettes containing the buffer alone and the complex were
in the zero beam. (pU), was always added to pre-existing double helical
poly (A) -poly (U).

CD spectra were recorded using a Jobin-Yvon Model 3 spectrometer.

Absorbance spectra were measured at 1°C and 25°C; thereafter,
the absorbance difference at 260 nm was found and used to calculate
the fractions of the free and bound ligand. The molar difference spectrum,
which corresponds to 1009%-bound ligand, was found from experiments
with a high oligomer/polymer ratio.

Binding curves were calculated for 1.0°C and the respective par-
ameters found according to the McGhee—von Hippel formula for co-
operative binding [""]. The binding of a single oligomer molecule to the
double helix is characterized by the binding constant K; molecules,
which bind (to sites adjacent to this (already occupied) site, have a
times bigger binding constant (i.e. @-K); n stands for the length of the
site (the number of base pairs which could be covered by a single
ligand molecule). The best fit was found by least squares.
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RESULTS

Upon mixing (pU), with pre-existing double helical poly(A) - poly (U)
and cooling the mixtures to 1°C in the cuvette compartment of the
spectrometer, hypochromicities were recorded as a ifunction of time.
After the initial rapid development of hypochromicity, an additional
decrease of absorption during the following.four hours was observed at
large oligomer/polymer ratios.

Reliable changes in hypochromicity were found for oligomers n>=>5
(Fig. 1). The melting of the complexes depended upon the concentration
of the salt added (Fig. 2); when the concentration of MgCl, was 10
mM or more, a plateau region was observed in the vicinity of 0°C. The
UV difference spectrum (Fig. 3) as well as the CD spectrum of the
transition (data not shown) were quite similar to those observed in
the case of poly(A) -2poly (U).
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Fig. 1. Kinetics of the reaction of poly(A)-poly(U) with (pU)s as observed at 260 nm.

(pU)s was added to double helical poly(A)-poly(U) at room temperature and cooled

down in the cuvette compartment of the spectrophotometer. The count of time began

from the moment the temperature 1°C was reached. Ordinate axis: change in absorbance

per base pair of poly(A)-poly(U) for the following ratios of molar concentrations
[U]J/[A-U]: 1 — 0.46, 2 — 0.78, 3 — 1.35, 4 — 1.79,
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Fig. 2. Melting curves of the complexes poly(A)-poly(U)+(pU)s in 1 mM cacodylate
buffer, pH 7.0, containing 10 mM NaCl and 7 — 4 mM, 2 — 6 mM or 3 — 10 mM
MgCl,. Before the measurements the specimens were held four hours at 1.0°C in the
cuvette compartment of the spectrophotometer in order to achieve equilibrium. The
hypochromicity of the specimens is given with respect to [P-] of the ligand molecule.
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Fig. 3. Difference spectra of the interaction of (pU)s with poly(A)-poly(U) at 1°C

with respect to room’ temperature ‘for the following ratios of molar concentrations

[U]/[U-A]: I —0.46, 2—056, 3—0.78, 4 —1.26, 5 —1.79. The interaction is accom-

panied with hypochromic'change in the uracil absorption band. The isobestic point is at

283.5 nm as expected for-the triple, helix [24]. The concentration of poly(A):poly(U)

was 4.0-10-* M. The absorbance difference ‘at 260 nm was used to -calculate the
fraction of bound ligand.
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Fig. 4. Scatchard plot of the interaction of (pU)s with poly(A)-poly(U) as measured

at 1°C. L — concentration (M) of the free ligand, [(pU)s]; v — fraction of the ligand

bound per base pair of poly(A)-poly(U). Experimental points are approximated by
the curve with the following parameters: K=790, =36 and n=4.4.

In order to calculate the binding constant of (pU)s a series of
measurements was performed at 1.0°C in the presence of 10 mM NaCl
and 10 mM MgCl,. The binding curve in the Scatchard representation
(Fig. 4) was typical of cooperative interaction and the data have been
approximated using the following parameters: K=790, =36, n=44.

In similar conditions, (pU)s did not bind to poly(dA)-poly(dT).

DISCUSSION

The high cooperativity of the first transition (Fig. 2) together with
the evidence from the difference UV (isobestic point at 283.5 nm, Fig.
3) and CD spectra allows us to suppose that upon the interaction of
poly(A) -poly(U) with oligouridylic acid the triple helix was formed
under the experimental conditions used. The complex contains poly(A)
and .poly (U) strands in the Watson—Crick pairing and the oligonuc-
leotide should occupy the third (Hoogsten) position. The number of
base pairs covered by a ligand as found from the Scatchard plot was
close to the expected value. In the case of 1 : 1 stoichiometry of poly(A)
and oligo(U), the formation of stable double helices has been observed
beginning with n=7 (50 mM cacodylate containing 100 mM NaCl and
10 mM MgCl,) ['8].

After dissociation of the ligand, the rearrangement of poly (A) -poly (U)
to the triple helix followed at 64.5°C (in the presence of 10 mM MgCly)
accompanied by the increase in light scattering. In the case of the triple
helical poly(A)-2poly(U), the melting of the complex followed at 85°C.
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The observed slow kinetics of the reaction between poly(A) -poly(U)
and (pU)s remains to be explained. One could speculate that some re-
arrangement of the initial helix or limited exchange between the two
pyrimidine strands could take place upon complex formation. The com-
plex of (pU)s with poly(A)-poly(U) was very weak. The mean dis-
sociation temperature of the ligand was 12.2°C in contrast to the melting
of the triple helix of poly(A) -2poly(U) at 85°C.

At low temperatures oligo(U) may be considered a specific ligand
to the A-U tracts in the double helical polyribonucleic acid (RNA). The
triple helix is shown to exist only in the A-form of polynucleotide [*].
Therefore, in the case of poly(A)-poly(U), the binding is expected to
take place with the pre-existing A-form and is thermodynamically
favoured. As far as DNA is concerned, the readiness to accommodate
the A-conformation depends upon the base composition, the A-T-rich
regions being the most unfavourable [2% 2']. The triple helices containing
dA-2dT base triads have been described earlier [2]; their stability was
much lower in comparison with ribopolymers in the same range of ionic
strength. The same is true for the complexes of poly(dA) -poly(dT) with
poly(U) as the third strand [%]. This seems to be the reason why
poly (dA) -poly(dT) does not bind short oligomers of the oligouridylic
acid. ¢ w

The interaction of the oligouridylic acid with double-stranded poly (A) -
-poly(U) was cooperative. One may expect the value of the bind-
ing constant to increase when the longer oligonucleotides are used.

There are additional possibilities of increasing the binding constant,
for instance, (1) introducing methyl or halogen groups into uracil [*],
(2) making use of bases other than uracil (retaining the groups es-
sential for H-bonding), (3) binding the oligonucleotides to some inter-
calator capable of interacting with the triple helix [*], etc.

In fact, halogen substitution of uracil is shown to elevate the melting
temperature of the triple-stranded helical complex poly(A) -2poly(U)
about 40°C. A significant increase in stability is expected to take place
also upon the modification of the oligouridylic acid. One may believe
that under appropriate conditions it is possible to use the oligouridylic
acid and perhaps oligocytidine as specific ligands with regard to poly-
purine sequences of RNA and DNA without additional intercalators
bound covalently to the oligomer.
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PENTAURIDUULHAPPE KOMPLEKSID KAKSIKHELIKAALSE
POLY(A)-POLY(U)-GA

Ergo RAUKAS, Kai KOOLI, Vitali JAMKOVOI

On ndidatud, et uridiini oligomeerid iildvalemiga (pU), (n=5) seos-
tuvad madalal temperatuuril magneesiumioonide manulusel ribopoliimee-
riga poly(A) -poly(U). Seostumiskdver Scatchardi koordinaadistikus on
iseloomulik kooperatiivsele seostumisele ja ldhendatav jargmiste para-
meetritega: K=790, =36, n=4,4. Oligouridiin seostub kaksikhelikaalse
ribopoliimeeriga Hoogsteni skeemi kohaselt kolmanda ahelana. Seega
voib oligouridiini vaadelda kaksikheeliksi koostises olevate poly(A)-de
jarjestuse suhtes spetsiifilise ligandina.

B3AUMOJENCTBHUE HEHTAY-PHJII/IJIOBOPI KHCJIOTbI C
JBOWHOW CHNUPAJIBIO MOJIU(A)-TNOJIU(U)

Apro PAYKAC, Kait KOOJIH, Buraanii SIMKOBOWM

IToka3ano, yTo mpu HH3KOH TeMmepaType H B NMpPHCYTCTBHH HOHOB Mar-
Hus noJiu (A) -nonu (U) cBsisbiBaer oauroypuauaatsel (pU), npu ycaoBHH
n>5. B mnpexncraBnennn Cksuapnaa, KpHBasi cBsisbiBaHHsi uMeer npu 1°C
KOOTIeDATHBHBIH Xapakrep H MoxKeT ObiThb onmHcaHa KoHcraHTaMu K=790,
0=36, n=4,4 (cornacio ¢opmyse Mak[n—don Xunnens). Bwickaszano
NpeAnoJoXxKeHHe, 4YTO OJHIOYPHAHJIATH CBS3bIBAIOTCSl ¢ LEMOYKOH moJiu (A)
B cocTaBe MABO#HOH cnupaad mnouu(A)-moau(U) mocpeacTBoM mnap THMA
Iyrcrena. Takum o6pa3oM, OJHFOypHAHJATH MOMKHO paccMaTpHBAaThb Kak
JIUTaH[Bl, crelHpHuecKHe K MOJHAJEHHHOBBIM IOCJEJ0BATeJbHOCTAM B CO-
craBe aBO#Ho# cnupaaun PHK.
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