Изв. АН Эстонии. Хим., 1990, **39**, № 3, 179—184 https://doi.org/10.3176/chem.1990.3.10

УДК 549: 614.841.47: 549.76

Рейн ВЕСКИ, Елена ЩЕРБАКОВА, Людмила БАЖЕНОВА

АММОНИЕВО-СУЛЬФАТНАЯ ТЕХНОГЕННАЯ МИНЕРАЛИЗАЦИЯ В ГОРЕЛЫХ ОТВАЛАХ МААРДУ

(Представил Ю. Канн)

Минералы, образующиеся в карьерах, отвалах, терриконах, шахтах и во многих других подобных геохимически активных зонах технической деятельности человека, считаются техногенными (в отличие от технических минералов заводского изготовления) и представляют собой объекты минералогии техногенеза [1]. Геохимически наиболее активными являются многие переотложенные породы, содержащие органическое вещество и сульфиды, чаще всего отходы добычи ископаемых углей и

горючих сланцев.

В Эстонии почти беспрецедентным примером таких отходов являются отвалы карьера ПО «Эстонфосфорит» в Маарду под Таллинном, содержащие до 38% диктионемовых горючих сланцев [2], не нашедших до сегодняшнего дня практического использования. К настоящему времени там захоронено около 60 млн. т этих сланцев с общими запасами тепло-энергии 2,8 · 10¹⁷ Дж [3]. На миллион тонн добытых сланцев приходилось в среднем 15 очагов самовозгорания. В условиях селективного способа захоронения их количество снизилось до 11,2 очага на миллион тонн сланца [3]. В результате выветривания и горения диктионемовых сланцев и пирита в отвалах активизировалось выщелачивание различных химических элементов [2]. В выщелоченных из отвалов водах содержатся ионы SO₂²⁻, Ca²⁺ и Mg²⁺, а также многие микроэлементы [2]. О высокой минерализации отвальных вод свидетельствуют богатые серой солевые корки, местами покрывающие отвалы [4].

В связи с этим немаловажно вспомнить, что уже в 1841 г. Э. Эйхвальд отметил выделение кристаллов самородной серы при горении диктионемовых горючих сланцев (по [5]). Первое сообщение о выделении кристаллов серы при горении техногенных скоплений этих сланцев, выброшенных при проходке тоннеля, принадлежат Г. фон Винклеру [6]. В Маарду сера иногда выделяется на поверхность горящих отвалов вместе со смолой, образующейся из диктионемовых горючих сланцев [7].

Высокая минерализованность отвальных вод, а также наличие сульфатов и элементной серы на поверхности отвалов наталкивали на мысль о наличии серусодержащих техногенных минералов и в отвалах. И действительно, в 1986 г. был обнаружен солевой налет вокруг раскопанного потухшего очага горения [8]. Более подробное изучение состава этого слоя и является целью данного исследования.

Экспериментальная часть

Потухший очаг горения, обнаруженный в Маардуском карьере, представлял собой 2-метровое в радиусе скопление выгоревшего и термически переработанного сланца разного цвета. В центре очага располагались полностью сгоревшие куски диктионемовых горючих сланцев красного цвета, вокруг них находился 30—40-сантиметровый слой выго-

Состав	Извест-	Диктио- немовый горючий сланец	Песча-	Глауко- нитовый песчаник	Пиритный слой	В среднем в отвальной массе	Аммоние- во-суль- фатный слой
	32,5	31,5	21,3	14,0	0,7	100,0	не опр.
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO CaO MgO MnO Na ₂ O K ₂ O P ₂ O ₅ SO ₃ S _t FeS ₂ CO ₂ H ₂ O C* H* N* S* O* (NH ₄) ₂ O п. п. п. п.	12,6 0,2 5,8 2,6 2,6 32,7 6,7 0,2 1,9 1,8 0,8 — — 34,2 0,3 — — —	50,9 0,7 12,3 1,0 2,4 0,7 1,2 следы 1,3 6,9 0,3 0,8 — 3,9 0,2 1,0 12,4 1,2 0,3 0,4 2,0 —	95,3 0,2 2,0 0,2 — 0,9 0,1 следы 1,8 0,4 0,5 — 0,2 0,1 — — 0,4 102,1	56,8 0,2 7,3 12,3 3,1 3,3 3,1 следы 0,2 6,5 0,9 0,2 — 0,8 2,2 — — — — — — — — —	47,3—53,9 0,5— 1,1 — 3,3—5,7 0,4—0,7 следы " 2,2—2,3 0,2—0,7 — 30,7—44,1 0,2 0,1 — — —	48,7 0,4 7,2 2,9 2,2 11,5 3,0 0,1 1,4 3,8 0,6 0,3 1,0 1,6 11,5 0,4 3,9 0,4 0,1 0,1 0,1 0,1 0,1 0,1	

^{*} В органическом веществе диктионемовых горючих сланцев [13].

ревшего сланца желтого цвета, который, в свою очередь, был окружен более мощным слоем закоксованного сланца черного цвета, который и содержал исследуемый нами солевой слой * сероватого цвета.

Количественное определение сульфатной серы проводили гравиметрическим методом с хлористым барием; магния и кальция — тоже гравиметрически, первого в виде пирофосфата, второго в виде СаО; закиси железа — объемным методом (титрование бихроматом калия); аммония и калия — в виде хлорплатинатов, затем калий определяли из отдельной навески методом пламенной фотометрии и вычитали из суммы [10]; Al₂O₃ — фотометрически с антразохромом [11]. Результаты химического анализа приведены в табл. 1.

Определение минерального состава проводили с помощью рентгенофазового анализа, хорошо зарекомендовавшего себя при диагностике тонкозернистых полиминеральных сульфатных агрегатов из горелых отвалов Челябинского угольного бассейна [¹]. Рентгенограммы (интервал 2Θ 5—45°) были сняты аналитиком Н. И. Кашигиной на дифрактометре ДРОН-2,0 (Си K_{α} -излучение). Для идентификации минералов использовали картотеку Американского общества испытателей материалов [¹⁴]. Общий вид одной из дифрактограмм показан на рис. 1. Основные линии на ней принадлежат минералам ряда буссенготит—морит (5,37; 5,12; 4,25; 4,19; 4,14; 3,79; 3,15 Å), кизериту (4,84; 3,42; 3,37; 3,32 Å) и чермигиту (7,08; 5,47; 4,32; 4,08; 3,27 Å) (см. также табл. 2).

В нормальных условиях при кристаллизации соединений типа буссенготит—морит возможен изоморфизм $NH_{\Lambda}^{+} \rightarrow K^{+}$ и $Mg^{2+} \rightarrow Fe^{2+}$,

^{*} Цветную фотографию очага см. в [9].

Рис. 1. Дифрактограмма аммониево-сульфатного слоя (ДРОН-2,0, CuK_{α}): I — буссенготит—морит, 2 — кизерит. 3 — чермигит.

Tаблица 2 Дифрактограмма аммониево-сульфатного слоя (идентифицирована по $[^{14}]$)*

Аммониево-суль- фатный слой		Кизерит		Буссенготит		Морит		Чермигит	
I	d, Å	I	d, Å	I	d, Å	I	d, Å	I	d, Å
1	7,08		No.	1 1000	_	_	_	55	7,07
1	5,47	-	-	-	-	-	-	55	5,48
2	5,37	-	-	40	5,36	50	5,36	-	7-100
<1	5,22	-	RAIT HOL	-	700-700	4	5,25	-	- 105
1	5,12	-	-	85	5,11	-	-		
0,5	5,00	_		-	A STATE OF	-	-	35	4,998
1	4,84	90	4,84	-		-	-	-	_
1	4,42	-	1	40	4,44	-	-	100	
4	4,32		-	16	4,30	10	4,32	100	4,327
3	4,25	Carried !	90 15 100	100	4,22	20	4,25	-	MANAGE STATE
9	4,19	To a	A America	20	110	100	4,20	7000	10000
2	4,14		None and the	30	4,16	55	4,13	80	4,079
10	4,08			70	3,79	55	3,79	00	4,079
10 8	3,79	100	3,41	4		10	3,42		
9	3,42 3,37	50	3,374	*	3,41	10	3,38		The state of
2 6	3,32	90	3,331		No. of London	10	0,00		
2	3,27	50	0,001	SHADE OF	BUT II D. S. P.	2000		75	3,273
3	3,15	_	_	16	3,15	8	3,14	_	
1	3,09	40	3,11			_		WALLER S	a m
1	3,055	80	3,053	0 - m	Kinner In	18	3,05	3 -10H	112115
1	2,966		_	8	2,966	-	_	20	2,967
1	2,810	non-	_	20	2,819	12	2,819	35	2,810
1	2,781	NI TO	0 _ 199	14	2,774	14	2,790	-	_
<1	2,738	704101	1110-410	H PLOE	11 -	-	100-000	18	2,738
<1	2,611	SI -	101-10	A	CO (-17)	110-0		12	2,608
<1	2,574	80	2,567	-	W. T.	100	-	-	-
1,5	2,528	90	2,527	8	2,521	-	-	To the same	STATE OF THE PARTY OF

^{*} Эталонные карты 13—102 (кизерит), 17—135 и 481 (буссенготит и морит) и 7—22 (чермигит).

вплоть до образования непрерывного ряда твердых растворов [15]. Исходя из данных общего химического анализа и некоторых особенностей дифрактограммы, а также учитывая возможность изоморфизма, мы вывели формулы определенных нами сульфатов и рассчитали их приблизительное соотношение в изученном материале: буссенготит—морит (NH_4 ,K) $_2$ ($Mg_{0.55}$ Fe $_{0.45}$) (SO_4) $_2 \cdot 6H_2O$, кизерит $MgSO_4 \cdot H_2O$, чермигит (NH_4 ,K)A1(SO_4) $_2 \cdot 12H_2O$; соотношение порядка 3:2:1.

Рис. 2. Термограмма аммониево-сульфатного слоя

Термограмма аммониево-сульфатного слоя, снятая аналитиком Т. С. Корниловой на дериватографе системы «Paulik-Paulik-Erdei» при скорости нагрева 10 град/мин из навески 105 мг, также хорошо демонстрирует полиминеральность материала (рис. 2). На кривой ДТА выделяются различные термические эффекты, связанные с теми или иными изменениями, происходящими в составе пробы при повышении температуры. Основными из них являются следующие: 1) мощный эндоэффект с резким минимумом при 140°С — дегидратация; 2) эндоэффекты с минимумами при 375 и 465°С — распад двойных сульфатов на простые с разложением «масканьитовой компоненты» (NH₄)₂SO₄; 3) пологий экзоэффект с максимумом при 550°С — окисление FeSO₄ до Fe₂(SO₄)₃; 4) обширное эндотермическое понижение выше 585°С с двумя небольшими минимумами при 780 и 880°С — десульфатизация Fe₂(SO₄)₃ и Al₂(SO₄)₃. Сульфаты калия и магния термически устойчивы вплоть до 1000°С [¹⁶].

Обсуждение и выводы

Из данных табл. 1 следует, что все химические элементы аммониевосульфатного слоя, кроме азота, имеются в минеральном веществе диктионемовых горючих сланцев, а также в глауконитовом песчанике и пиритном слое. В известняке отсутствует сера, в песчанике — сера и двухвалентное железо. Источником азота в аммониево-сульфатном слое несомненно является органическое вещество диктионемовых горючих сланцев. Высокой подвижностью газообразных соединений серы и азота объясняется их концентрирование в аммониево-сульфатном слое относительно остальной отвальной горной массы.

Проблематичным остается вопрос об образовании при горении аммиака. В обзорной литературе называется только вероятный источник аммониевой минерализации в горелых отвалах — органическое вещество [17, 18], но сам механизм этого процесса обсуждается только в связи с отложением нитрата аммония (NH₄NO₃) при эндогенных пожарах. Одни авторы считают, что аммиак возникает при пиролизе азотсодержащих органических веществ [19], другие, не раскрывая источника аммиака, допускают окисление части его до NO₂, что делает возможным образование нитрата аммония [20].

При полукоксовании диктионемовых горючих сланцев образуются преимущественно восстановленные соединения азота и серы (NH₃, H₂S) [21], необходимые для аммониевой (NH^+) , но не для сульфатной (SO^{2-1}) минерализации. Газы полного горения диктионемовых горючих сланцев содержат NO2 и SO2, пригодные для сульфатной, но не для аммониевой минерализации. Однако подсмольная вода, получаемая при полукоксовании диктионемовых горючих сланцев в лабораторной железной ретор-

те, содержит на тонну сланца 5,8 кг (NH₄)₂SO₄ [6], для образования которых требуются одновременно восстановленные соединения азота и окис-

ленные соединения серы.

Газы горения, богатые NO2 и SO2, но бедные кислородом, выходя из очага горения на поверхность, должны вызывать полукоксование лежащих на их пути диктионемовых горючих сланцев с образованием NH₃ и H₂S. Полученная смесь газов, содержащая, кроме отмеченных продуктов горения и полукоксования, летучие органические соединения, водород и другие соединения, реакционноспособна, и бывает, что при пожарах H_2S и SO_2 не выходят на поверхность отвалов, так как реагируют между собой, давая элементную серу и воду [22]. Образовавшийся при полукоксовании аммиак может служить восстановителем для оксидов азота, выделяющихся при горении сланца [23].

Образование техногенных минералов в выгоревших отвалах зависит, таким образом, от соотношения реакционноспособных компонентов горения и полукоксования и химической активности отвальной горной массы в очаге горения. Поэтому не случайно, что аммониево-сульфатный слой располагается в закоксованном слое диктионемовых горючих сланцев. Вполне вероятно, что в образовании кизерита и буссенготит-морита

участвует MgCO₃ известняка, реагирующий с SO₂.

Итак, экспериментально доказано, что в отвалах Маардуского карьера в результате самовозгорания органического вещества диктионемовых горючих сланцев и пирита образуются с участием других сопутствующих минералов горной массы (прежде всего, вероятно, известняка) техногенные минералы буссенготит—морит $(NH_4,K)_2(Mg_{0.55}Fe_{0.45})$ (SO₄) 2. • 6H₂O, кизерит MgSO₄ · H₂O и чермигит (NH₄, K) Al (SO₄)₂ · 12H₂O в соотношении ~ 3:2:1.

Техногенная аммониевая минерализация связана с процессом полукоксования диктионемовых горючих сланцев. Эти сланцы служат как источником аммониево-сульфатной техногенной минерализации, так и геохимическим барьером для этих минералов.

Авторы глубоко признательны Б. В. Чеснокову за консультации и

помощь в работе.

ЛИТЕРАТУРА

1. Чесноков Б. В., Баженова Л. Ф., Щербакова Е. П., Михаль Т. А., Дерябина Т. Н. Минералогия горелых отвалов Челябинского угольного бассейна (опыт минера-

Минералогия горелых отвалов Челябинского угольного бассейна (опыт минералогин техногенеза). Свердловск, 1987. (Препринт.)

2. Pihlak, A., Maremäe, E., Lippmaa, E. Keskkonda ohustavate komponentide leostumine Maardu fosforiidikarjääri puistangutest // Kaasaegse ökoloogia probleemid. Ökoloogia ja ühiskond. Tartu, 1988, 113—116.

3. Pihlak, A., Lippmaa, E., Pikkov, V. Diktüoneemakilda oksüdeerumine puistangutes— keskkonna soojusliku saastumise allikas // Kaasaegse ökoloogia probleemid. Ökoloogia ja ühiskond. Tartu, 1988, 108—113.

4. Pihlak, A., Maremäe, E., Pikkov, V., Lippmaa, E. Maardu fosforiidikarjääride puistangute saastav mõju veele // Eesti NSV TA Toim. Biol., 1984, 33, N 3, 166—170.

5. Пихлак А. А. Из истории исследований самовозгорания горючих сланцев Эстонии.

Первый период (1791—1917 гг.) // Горючие сланцы, 1985, 2, № 3, 279—288. Winkler, H. von. Eestimaa geoloogia. 1. Ladelugu. Urgaegkond — devoon. Tallinn,

 Вески Р., Сидорова С. О смоле самовозгорания диктионемового горючего сланца.
 Сера в смоле // Изв. АН ЭССР. Хим., 1981, 30, № 2, 95—100.
 Pihlak, A., Veski, R. Keskkonda saastavad väävli- ja õlieritused diktüoneemakilda põlemisel Maardu karjäärides // Kaasaegse ökoloogia probleemid. Ökoloogia ja ühiskond. Tartu, 1988, 116—118.

9. Veski, R. Pihlak, A. Unikaalne «eksperiment» // Horisont, 1989, N 1, 12—13.

10. Пономарев А. И. Методы химического анализа минералов и горных пород. М., 1951.

 Определение кремния и алюминия в минеральном сырье. М., 1982.
 Пихлак А. А., Маремяя Э. Я., Ялакас Л. Э. Водное выщелачивание диктионемовых сланцев и известняков из фосфоритовых месторождений Маарду и Тоолсе Эстонской ССР // Горючие сланцы, 1985, 2, № 2, 155—169.

13. Kirret, O., Koch, R., Ründal, L. Maardu leiukoha diktüoneemakildast ja temas sisalduva kerogeeni keemilisest koostisest // Eesti NSV TA Toim. Tehn. ja füüs.-mat.

tead. seeria, 1959, 8, N 4, 243—254.

14. Joint Committee on Powder Diffraction Standards, published by the International Centre for Diffraction Data. Pennsylvania, 1977.

15. Справочник по растворимости. Л., 1969-1970, т. 1-3

Справочник по растворимости. Л., 1909—1970, т. 1—3.
 Термический анализ минералов и горных пород. Л., 1974.
 Lapham, D. M., Barnes, J. H., Downey, W. F. Jr., Finkelman, R. B. Mineralogy associated with burning anthracite deposits of Eastern Pennsylvania // Ра Geol. Surv. Miner. Resour. Rept., 1980, N 78, 1—82.
 Новиков В. П., Супрычев В. В. Условия современного минералообразования в про-

цессе подземного горения углей на Фан-Ягнобском месторождении // Минерало-

тия Таджикистана, 1986, № 7, 91—104.

19. *Авдонин В. Н., Пахолкова Н. В.* Нитраты аммония и морит — продукты эндогенного серноколчеданного пожара на месторождении Текели // Минералогия техноге-

серноколчеданного пожара на месторождении Текели // Минералогия техногенеза и минерально-сырьевые комплексы Урала. Свердловск, 1988, 37—48.

20. Белаковский Д. И., Москалев И. В. Аммонневая селитра из продуктов угольного пожара в урочище Кухи-Малик (Центральный Таджикистан) // Новые данные о минералах, 1988, вып. 35, 191—194.

21. Стрельковская А. Г., Копачинский К. Ф. К исследованию диктионемовых сланцев Эстонии // Геология и геохимия горючих ископаемых, 1987, № 68, 76—82.

22. Визтіп, R. М., Матhеws, W. Н. In situ gasification of coal, a natural example: additional data on the Aldridge Creek coal fire Southeastern British Columbia // Can

tional data on the Aldridge Creek coal fire, Southeastern British Columbia // Can. J. Earth Sci., 1985, 22, 1858—1864. 23. Arai, N., Hasatani, M., Nakai, Y. In-furnace reduction of NO_x during the parallel-flow

moving-bed combustion of surplus activated sludge char by an active use of self-evolved ammonia // Fuel, 1988, 68, N 5, 591-595.

Институт химии Академии наук Эстонии

Поступила в редакцию 29/XII 1989

Инститит минералогии Уральского отделения АН СССР

Rein VESKI, Jelena ŠTŠERBAKOVA, Ljudmila BAŽENOVA

TEHNOGEENNE AMMOONIUMSULFAATNE MINERALISATSIOON MAARDU PÕLENUD PUISTANGUTES

Keemilise, röntgeni-faasi-, termilise ja muude analüüsimeetoditega on kindlaks tehtud, et soolade kiht, mis moodustub diktüoneemakilda puistangusisese põlemise kustunud kolde ümber Maardu karjäärides, sisaldab bussengotiit-moriiti, kiseriiti ja tšermigiiti vahekorras ~ 3:2:1. Ammooniumsulfaatse mineralisatsiooni kutsuvad esile diktüoneemakilda põlemis- ja utmisproduktid, koksistunud kilda kiht kolde ümber on aga geokeemiliseks barjääriks tekkinud tehnogeensetele mineraalidele.

Rein VESKI, Elena SHCHERBAKOVA and Ludmila BAZHENOVA

TECHNOGENIC AMMONIUM-SULPHATE MINERALIZATION OF BURNT SPOIL HEAPS AT MAARDU

By using chemical, x-ray-phase, thermal and other methods of analyses it has been established that the salt layer around the underground burnt centre of dictyonema oil shale in Maardu pits near Tallinn contains boussingaultite-morite, kieserite and chermigite at a ratio of $\sim 3:2:1$. It is supposed that ammonium-sulphate mineralization is caused by migration of gaseous combustion and semicoking products of dictyonema oil shale, while its semicoked layer around the burnt centre serves as a geochemical barrier to the technogenic minerals formed.