Изв. АН Эстонии. Хим., 1990, 39, № 3, 171—174 https://doi.org/10.3176/chem.1990.3.08

УДК 661.635.4.093.6.047

3*

Кайа ТЫНСУААДУ, Михкель ВЕЙДЕРМА, Мерике ПЕЛД

ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ В СМЕСЯХ ДИГИДРО-ФОСФАТА КАЛЬЦИЯ С КРЕМНЕВОЙ КИСЛОТОЙ И ГЛАУКОНИТОМ

В процессе кислотно-термической переработки природных фосфатов при содержании в них или при добавлении к ним кремнезема и силикатов (нефелина, глауконита, форстерита) происходит взаимодействие последних с продуктами дегидратации дигидрофосфата кальция. В настоящей статье представлены результаты изучения термических превращений в смесях Ca (H₂PO₄)₂·H₂O с SiO₂·nH₂O и глауконитом [K (Al, Fe)Fe²⁺Si₄O₁₀·(OH)₂] до температуры 600 °C.

Использовали химический, термический (дериватограф МОМ, ВНР), рентгенофазовый (Дрон-3М, Со K_{α}) и хроматографический методы анализа. Для хроматографического анализа на бумаге полимерные фосфаты переводили в раствор с помощью ионного обмена на катионите Dowex 50W [¹].

В экспериментах использовали Ca $(H_2PO_4)_2 \cdot H_2O$ квалификации ч. д. а. $(CaO - 21,94\%, P_2O_5 - 55,35\%, H_2O - 22,71\%)$; аморфную SiO₂ · nH_2O (SiO₂ - 93,20%, H₂O - 6,80%), приготовленную путем осаждения ее из раствора силиката натрия соляной кислотой, фильтрования, промывки осадка до исчезновения в фильтрате хлорид-ионов и высушивания при 90°C до постоянной массы; глауконит Маардуского месторождения (SiO₂ - 51,06%, Fe₂O₃ - 20,84%, Al₂O₃ - 10,67%, K₂O - 8,98%, H₂O - 5,60% и др.).

Смеси с соотношением масс 1:1 и их компоненты по отдельности нагревали в печи дериватографа (навеска 2 г) в воздушной среде до заданной температуры со скоростью 2,5 град/мин.

Термограммы: 1 — Са(H₂PO₄)₂·H₂O, 2 — SiO₂·n H₂O, 3 — глауконит, 4 — смесь Са(H₂PO₄)₂·H₂O+SiO₂·n H₂O (1:1), 5 — смесь Са(H₂PO₄)₂·H₂O+глауконит (1:1). Динамический нагрев со скоростью 2,5 град/мин в открытом тигле (1000 мг).

Данные термического анализа (рисунок) показывают, что кремневая кислота и глауконит оказывают значительное влияние на дегидратацию Ca $(H_2PO_4)_2 \cdot H_2O$. Так, до 250 °C чистый Ca $(H_2PO_4)_2 \cdot H_2O$ теряет до 71% воды, смесь с глауконитом — до 66% и смесь с SiO₂ · nH_2O — до 60% от воды, содержащейся в чистой соли. Тем не менее дегидратация смесей заканчивается на 20—30 °C раньше, чем чистого Ca $(H_2PO_4)_2 \cdot H_2O$.

Дифрактограммы смесей, нагретых до температур, выбранных на основании термического анализа, имеют сложный характер и содержат большое число пиков, причем часть из них теряется из-за присутствия аморфного вещества. Идентифицированные соединения приведены в табл. 1. Существенных отличий на дифрактограммах нагретых смесей и их водонерастворимых остатков не наблюдается.

Данные хроматографического анализа по определению полифосфатного состава водорастворимых и ионообменнорастворимых фосфатов, а также результаты анализа на содержание водорастворимых P_2O_5 , CaO и K_2O показывают, что при нагреве до 250 °C относительное содержание монофосфата в смеси с SiO₂ · nH_2O в 2 раза выше, чем в чистом Ca $(H_2PO_4)_2 \cdot H_2O$, хотя водорастворимость фосфатов для смеси на 11,8% ниже (табл. 2). Отсюда следует, что образующаяся при дегидратации Ca $(H_2PO_4)_2 \cdot H_2O$ фосфорная кислота [⁴] взаимодействует с SiO₂ · nH_2O ,

Таблица 1

*						
Темпе-	Ca $(H_2PO_4)_2$	$\begin{array}{l} H_2O + \operatorname{SiO}_2 \cdot n H_2O \\ 1:1) \end{array}$	Са(H ₂ PO ₄) ₂ · H ₂ O+глауконит (1:1)			
°С	Соединение	Характерные <i>d</i> , Å (<i>I</i> / <i>I</i> ₀)	Соединение	Характерные <i>d</i> , Å (<i>I</i> / <i>I</i> ₀)		
250 CaHPO ₄ [²] 2,96(100) 3,37(70) 3,35(75)		2,96 (100) 3,37 (90) 3,35 (70)	CaHPO ₄	2,96 (100) 3,37 (60) 3,35 (60)		
	Сан ₂ F ₂ O ₇ [²] 3.33 (100) 3,73 (60) 3,18 (60) аморфная фаза	3,33 (90) 3,73 (60) 3,18 (50)	глауконит 2,59 (100), 4,54 (80) 2,41 (50) аморфная фаза	$\begin{array}{c} 2,59(40) \\ 4,54(30) \\ 2,41(25) \end{array}$		
400	$\begin{array}{c} \gamma \text{-} Ca_2 P_2 O_7 \ [^2] \\ 3,04 \ (100) \\ 3,08 \ (85) \\ 2,91 \ (56) \\ \delta \text{-} Ca \ (PO_3) \ 2 \ [^2] \\ 3,54 \ (100) \\ 2,83 \ (30) \\ 3 \ 15 \ (17) \end{array}$	3,04 (100) 3,08 (60) 2,91 (100) 2,68 (20) 3,54 (40) 2,83 (10) 3,15 (5)	ү-Са₂Р₂О7 глауконит	$\begin{array}{c} 3,04(100)\\ 3,08(80)\\ 2,91(100)\\ 2,68(30)\\ 2,59(40)\\ 4,54(70)\\ 2,41(30) \end{array}$		
	аморфная фаза	0,10(0)	К (Al, Fe) · Р ₂ О ₇ аморфная фаза	2,92(100) 4,19(30)		
600	γ-Ca ₂ P ₂ O ₇	3.04(80) 3.08(40) 2.91(80) 2.68(10)	$\gamma\text{-}Ca_2P_2O_7$	3,04 (70) 3,08 (50) 2,91 (100) 2,68 (20)		
	δ-Ca (PO ₃) ₂	3,54 (100) 2,83 (40) 3,15 (20)	δ-Ca(PO ₃) ₂	3,54 (50) 2,83 (30) 3,15 (30)		
	xSiO ₂ · yP ₂ O ₅ [³] 3,53 (100) 2,78 (45) 3,94 (40) аморфная фаза	3,53 (100) 3,94 (60) 2,78 (10)	K(Al, Fe)P ₂ O ₇ 2,92(100) 3,92(45) 4,19(15) [²]	2,92 (100) 3,92 (20) 4,19 (30)		

Основной состав нагретых смесей по данным рентгенофазового анализа

что препятствует протеканию процесса поликонденсации фосфатов. После нагрева в смесях остается CaHPO₄ — другой продукт диспропорционирования Ca(H₂PO₄)₂·H₂O (табл. 1). Возможно образование фосфатов кремния [³].

При нагреве с 250 до 600 °С содержание монофосфатов уменьшается, особенно в продуктах нагрева чистой соли. Появление в нагретых смесях γ -Ca₂P₂O₇ (табл. 1) вызвано дегидратацией CaHPO₄. В смеси с SiO₂ · nH₂O, нагретой до 400 °С, содержание дифосфата составляет 30% от общего P₂O₅, в то время как в чистом Ca(H₂PO₄)₂ · H₂O — лишь 24%. Содержание высокополимерных фосфатов (нерастворимых при ионном обмене) составляет в смеси с SiO₂ · nH₂O 33%, а в чистой соли — 65,7% от общего P₂O₅. При нагреве до 600 °С эта разность возрастает еще больше (табл. 2) — часть P₂O₅ связывается в виде фосфатов кремнил (табл. 1). Доказательством тому служит уменьшение мольного соотношения CaO/P₂O₅ в водорастворимой части нагретых смесей.

В смеси с глауконитом картина превращений при дегидратации Ca (H₂PO₄)₂·H₂O аналогична. В смеси, нагретой до 250 °C, содержание водорастворимого монофосфата в 1,5 раза меньше, чем ионообменнорастворимого. Рентгенофазовым анализом установлено наличие CaHPO₄ (табл. 1). На реакцию продуктов дегидратации Ca (H₂PO₄)₂·H₂O с глауконитом указывает также повышение доли водорастворимого K₂O с 1,8 до 9,1% отн., чего нет при прокаливании только глауконита.

При нагреве смеси с глауконитом до 400 °С доля дифосфатов увеличивается с 10 до 30% отн., тогда как в чистом Ca (H₂PO₄)₂·H₂O она уменьшается на 3% отн. При этом содержание ионообменнонерастворимых полифосфатов в смеси убывает. Уменьшение растворимости фосфатов в продуктах нагрева при температурах от 400 до 600 °С связано с кристаллизацией полифосфатов. В образцах, нагретых до 600 °С, высокополимерные фосфаты составляют 99,1% для Ca (H₂PO₄)₂·H₂O и 54,2% для смеси с глауконитом (от общего содержания фосфатов). В смеси установлено образование смешанных фосфатов типа K (Al, Fe) P₂O₇

Таблица 2

				10000		1 (0)(1200)		941 193	
Образец	Ca (H	$Ca(H_2PO_4)_2 \cdot H_2O$		$\begin{array}{c} Ca(H_2PO_4)_2 \cdot H_2O + \\ + SiO_2 \cdot nH_2O \end{array}$		Са(H ₂ PO ₄) ₂ · H ₂ O+ + глауконит			
Температура, °С	250	400	600	250	400	600	250	400	600
Содержание Р ₂ О ₅ , %	62,5	67,8	69,5	29,9	31,2	31,5	29,1	30,2	31,0
Ионооб	меннора	створи	имые, 9	$^{\prime}_{6}$ P ₂ O ₅	от об	щего Р	2O5		
Монофосфат Дифосфат Полифосфаты (n≥3) Сумма раств. Р ₂ О ₅ Во	30 27 27 84,4	10 24 	2 	60 13 10 82,9	10 30 30 67,0	10 20 25 54,6	60 10 15 85,1	3 30 30 62,8	6 30 10 45,8
Монофосфат Дифосфат Полифосфаты (n≥3) Сумма раств. Р ₂ О ₅ К ₂ О, отн. % СаО, отн. % Мольное соотношение СаО+К ₂ О	30 20 20 72,6 0 62,9	10 5 3 17,9 0 6,5	1 1,1 0 1,0	50 10 1 61,0 0 56,0	10 8 22 40,8 0 25,2	$ \begin{array}{c} 10 \\ 4 \\ \overline{} \\ 13,6 \\ 0 \\ 3,9 \end{array} $	40 10 15 65,8 9,1 32,8	5 7 5 17,1 5,6 14,6	2 2,5 3,9 1,5
P_2O_5	0,87	0,37	0,95	0,92	0,62	0,40	0,50	0,86	1,01

Состав продуктов дегидратации

(табл. 1). Как известно, превращения в структуре глауконита при прокаливании протекают выше 300 °C [5].

Таким образом, из полученных данных вытекает, что аморфная кремневая кислота и глауконит взаимодействуют с промежуточными продуктами дегидратации Са (H₂PO₄)₂ · H₂O. Образуются новые соединения (фосфаты кремния, смешанные фосфаты калия, алюминия и железа), в связи с чем изменяется ход дегидратации и поликонденсации фосфатов. Содержание высокополимерных фосфатов в продуктах дегидратации смесей меньше.

ЛИТЕРАТУРА

- Вейдерма М. А., Пылдме Ю. Х. Состав продуктов термической дегидратации моно-кальцийфосфата // Ж. неорган. хим., 1976, 21, № 1, 10—15.
 Сrystallographic Properties of Fertilizer Compounds // Chem. Eng. Bull., 1967, N 6.
 Мальшиков А. Е. Синтез соединений SiO₂ · P₂O₅, BI и 5SiO₂ · 3P₂O₅ и исследование их методом ИК-спектроскопии // Ж. неорган. хим., 1987, 32, № 10, 2370—2374.
 Здукос А. Т., Ваймакис Т. Х. Механизм дегидратации Са(H₂PO₄)₂ · H₂O // Ж. не-орган. хим., 1987, 32, № 10, 2351—2357.
 Севдовод А. Рани А. Тарлаков, Ю. Сендовод М. Изучение изменения струк-

- Севастьянова А., Ряни А., Тарлаков Ю., Сендюров М. Изучение изменения струк-туры и окраски глауконита при его термической обработке // Сб. тр. НИПИ силикатобетон (Таллинн), 1974, № 8, 32—44.

Таллиннский технический университет

Поступила в редакцию 14/II 1990

Kaia TONSUAADU, Mihkel VEIDERMA, Merike PELD

MUUTUSED KALTSIUMDIVESINIKFOSFAADI SEGUDES RÄNIHAPPE JA GLAUKONIIDIGA KUUMUTAMISEL

Reageerides kuumutamisel Ca (H2PO4)2 · H2O dehüdratatsiooniproduktidega, muudavad Reageerides kuumutamisel Ca $(H_2PO_4)_2 \cdot H_2O$ dehüdratatsiooniproduktidega, muudavad SiO₂ · nH₂O ja glaukoniit oluliselt dehüdratatsiooni käiku ja saadava produkti koostist. Algstaadiumis (kuni 250 °C) dehüdratatsioon aeglustub. H₃PO₄ reageerib lisanditega. Selle tulemusel lisanduvad peale CaHPO₄ ja polüfosfaatide SiO₂ · nH₂O-ga segusse räni-fosfaadid ning glaukoniidiga segusse Al-, K- ja Fe-fosfaat. Osa dehüdratatsiooniprodukte on amorfsel kujul. Vee eraldumine lõpeb temperatuuril 380—400 °C, s. t. 20—30 °C varem kui Ca (H₂PO₄)₂ · H₂O-s. Kuumutamisel üle 400 °C toimub amorfsete ühendite kristallisat-sioon. Segude kuumutusproduktides (600 °C) on fosfaatide summaarne polümerisatsiooni-aste väikeem kui Ca (H₂PO₄)₂ · H₂O · pubul aste väiksem kui Ca(H2PO4)2 · H2O puhul.

Kaia TONSUAADU, Mihkel VEIDERMA and Merike PELD

THERMAL CHANGES IN THE MIXTURES OF CALCIUM DIHYDROGEN PHOSPHATE WITH SILICIC ACID AND GLAUCONITE

 $SiO_2 \cdot nH_2O$ and glauconite reacting on heating with the products of the dehydration of $Ca(H_2PO_4)_2 \cdot H_2O$ substantially change the course of dehydration and the composition of the product. At the beginning (up to 250 °C) dehydration proceeds more slowly. H_3PO_4 interacts with impurities forming siliconphosphates in the mixture with $SiO_2 \cdot nH_2O$, and Al-, K-, Fe-phosphates in the mixture with glauconite in addition to CaHPO₄ and calciumpolyphosphates. Some of the dehydration products are in an amorphous form. The liberation of water from the mixtures stops at 380—400 °C, i.e. at a 20—30 °C lower temperature than from $Ca(H_2PO_4)_2 \cdot H_2O$. On heating above 400 °C the amorphous compounds crystallize. The total degree of polymerization in heated mixtures is lower than in case of pure calcium polyphosphate. than in case of pure calcium polyphosphate.