Изв. АН Эстонии. Хим., 1990, **39**, № 3, 161—166 https://doi.org/10.3176/chem.1990.3.06 УДК 66.023 : 66.094.49

Тамила ПЕТРОВСКАЯ, Гуйдо РАЯЛО, Ильмар КИРЬЯНЕН, Рутьх ЛУХАКООДЕР

КИНЕТИКА ПРОЦЕССА СИНТЕЗА *п*-толилсульфината Натрия

(Представил Ю. Канн)

Натриевая соль *n*-толилсульфиновой кислоты является промежуточным продуктом синтеза сульфонов, а из них — пиретроидов и других соединений. Она получается взаимодействием *n*-толилсульфохлорида и сульфита натрия в щелочной среде по следующему суммарному уравнению:

$$\begin{array}{c} O & O \\ \parallel \\ R-S-Cl+Na_2SO_3+2NaOH \rightarrow R-S-O-Na+Na_2SO_4+NaCl+H_2O, \\ \parallel \\ O \end{array}$$
(1)

где $R = CH_3C_6H_5$.

Реакция протекает в гетерогенной системе, где твердые частицы *n*-толилсульфохлорида реагируют с растворенным в водной фазе сульфитом натрия. pH среды поддерживается постоянным (7,4—7,6) путем непрерывной подачи раствора едкого натра. Побочными реакциями являются гидролиз *n*-толилсульфохлорида на толилсульфонат, который становится существенным, если pH среды превышает вышеприведеннное значение, и разложение сульфита натрия с выделением SO₂ в более кислой среде. Если pH строго поддерживать в указанных пределах, побочные реакции практически не протекают.

Основная реакция многостадийная. Можно предположить, что она представляет собой совокупность следующих частных реакций:

 $\begin{array}{c} O & O \\ \parallel & \parallel \\ R-S-Cl \neq R-S^++Cl^-, \\ \parallel & \parallel \\ O & O \end{array}$ (2)

$$\begin{array}{cccc}
O & O & O \\
\parallel & & \parallel \\
R-S^{+}+SO_{3}^{2-} \rightarrow R \xrightarrow{\parallel} S \dots O \xrightarrow{\parallel} S \xrightarrow{\parallel} O^{-}, \\
\parallel & & \parallel \\
O & & O \end{array}$$
(3)

$$\stackrel{\parallel}{\xrightarrow{}} \stackrel{-O}{\xrightarrow{}} \stackrel{\parallel}{\xrightarrow{}} \stackrel{+OH^-}{\xrightarrow{}} HSO_{4}^-,$$
(5)

161

$$HSO_{4}^{-} \rightarrow H^{+} + SO_{4}^{2-}, \tag{6}$$

 $Na_2SO_3 \rightarrow 2Na^+ + SO_2^{2-}, \tag{7}$

 $2NaOH \rightarrow 2Na^+ + 2OH^-,$ (8)

$$Na^++Cl^- \rightarrow NaCl,$$
 (9)

$$R = \hat{S} = O^{-} + Na^{+} \rightarrow R = \hat{S} = O = Na,$$
(10)

 $SO_4^2 + 2Na^+ \rightarrow Na_2SO_4,$ (11)

$$2H^+ + 2OH^- \rightleftharpoons 2H_2O. \tag{12}$$

Общая скорость реакции лимитируется гетерогенной стадией образования промежуточного комплекса (3). Остальные стадии гомогенные, ионные и быстропротекающие. Таким образом, имеем дело с реакцией нуклеофильного замещения второго порядка (типа $S_N 2$), скорость которой выражается уравнением

$$\frac{\mathrm{d}C_{\mathrm{RSO}_{2}^{-}}}{\mathrm{d}t} = K_{1}^{\prime} \cdot C_{\mathrm{RSO}_{2}^{+}} \cdot C_{\mathrm{SO}_{2}^{2^{-}}}.$$
(13)

Здесь t — время, $C_{\text{RSO}_2^-}$, $C_{\text{RSO}_2^+}$, $C_{\text{SO}_2^{*-}}$ — мольные концентрации *n*-толилсульфонил-, *n*-толилсульфонат- и сульфит-ионов соответственно.

При составлении математической модели процесса приняты следующие предположения. *n*-Толилсульфохлорид нерастворим в воде, лимитирующая стадия реакции протекает на поверхности его твердых частиц. Поверхность твердого реагента равнодоступна для всех компонентов жидкой фазы и на ней сохраняется ионное равновесие между *n*-толилсульфохлоридом и его радикалами. Учитывая постоянство pH, считаем степень диссоциации сульфита натрия и концентрацию гидроксил-ионов в растворе неизменными. *n*-Толилсульфохлорид находится в реакционной смеси в виде суспензии мелких твердых частиц, довольно однородных по своим размерам. Количество твердых частиц остается в ходе реакции постоянным, а их радиус уменьшается по мере расхода реагента. Отметим, что система кинетических уравнений составлена нами для случая сферических частиц *n*-толилсульфохлорида, но она полностью пригодна и для частиц кубической формы.

Как показывают литературные данные [1-4], значение коэффициента массопередачи в рассматриваемом нами диапазоне диаметра частиц (в среднем 0,3 мм) практически не зависит от их размера. Что касается зависимости скорости процесса от интенсивности перемешивания, то результаты наших опытов, проведенных в лабораторном реакторе (емкость V=1,0 л, соотношение длины лопасти мешалки к диаметру сосуда d/D=0,18-0,25, N=400-800 об/мин), а также в промышленном реакторе с турбинной мешалкой (V=500 л, d/D=0,22, N=250-400 об/мин) показывают, что скорость вращения мешалки в случае уже достаточно высокой интенсивности перемешивания не влияет на общую скорость процесса. Отсюда следует, что в таких гидродинамических условиях процесс протекает в кинетической области, т.е. общая скорость его лимитируется скоростью химической реакции.

Условная мольная концентрация твердого n-толилсульфохлорида в реакционной смеси \overline{C}_{RSO_2CI} выражается уравнением

$$\overline{C}_{\rm RSO_4CI} = \frac{4\pi r^3 \varrho n}{2M},\tag{14}$$

где *n* — количество твердых частиц в единице объема реакционной смеси, *r* — радиус частицы, *Q* — плотность, М — молекулярная масса *n*-толилсульфохлорида. Образование промежуточного комплекса (3) происходит при столкновении сульфит-ионов с положительными *n*-толилсульфонил-ионами на поверхности твердых частиц. Учитывая еще ионное равновесие и, тем самым, постоянство концентрации *n*-толилсульфонил-иона на поверхности твердого вещества, уравнение скорости (13) можем переписать в виде

$$\overline{R} = K'' \cdot 4\pi r^2 n \cdot C_{\mathrm{SO}^{2-}},\tag{15}$$

где \overline{R} — количество образовавшихся молей *n*-толилсульфината натрия в единицу времени на единицу объема реакционной смеси.

Выводя значение r из уравнения (14) и подставляя его в уравнение (15), получаем

$$\overline{R} = -\frac{1}{2} \frac{d(V_{\text{NaOH}} \cdot M_{\text{NaOH}})}{dt \cdot V_{\text{p}}} = \frac{dC_{\text{RSO}_{2}\text{Na}}}{dt} = -\frac{dC_{\text{Na}_{2}\text{SO}_{3}}}{dt} = -\frac{d\overline{C}_{\text{Na}_{2}\text{SO}_{3}}}{dt} = -\frac{d\overline{C}_{\text{RSO}_{2}\text{Cl}}}{dt} = K_{1} \cdot \overline{C}_{\text{RSO}_{2}\text{Cl}}^{2/3} \cdot C_{\text{Na}_{2}\text{SO}_{3}}.$$
(16)

Здесь V_{NaOH} — объем, м³; М_{NaOH} — молярность раствора едкого натра, кмоль/м³; t — время, с; С_{RSO₂Na}, С_{Na₂SO₃}, С_{RSO₂CI} — концентрации *n*-толилсульфината натрия, сульфита натрия и *n*-толилсульфохлорида, кмоль/м³.

Константа скорости К₁ зависит от температуры по закону Аррениуса

$$K_1 = K_p \cdot e^{-\frac{\Delta E}{RT}}, \qquad (17)$$

где T — температура, К; ΔE — энергия активации, ккал/кмоль; R — газовая постоянная, K_p — предэкспоненциальный множитель.

Вышеприведенные уравнения действительны для постоянного объема реакционной смеси. В нашем случае происходит значительное увеличение объема за счет прибавления раствора едкого натра в ходе процесса. Скорость увеличения объема реакционной смеси V_p равна скорости прибавления щелочи:

$$\frac{\mathrm{d}V_{\mathrm{p}}}{\mathrm{d}t} = \frac{\mathrm{d}V_{\mathrm{NaOH}}}{\mathrm{d}t}.$$
 (18)

Реакция образования *п*-толилсульфината натрия экзотермическая, поэтому в математическую модель должно быть включено уравнение теплового баланса реактора. Процесс мы проводили в неизотермических и неаднабатических условиях, поэтому в тепловой баланс включены члены, отражающие наряду с тепловым эффектом реакции еще теплообмен с окружающей средой, тепло, расходуемое на подогрев аппаратуры и прибавленного раствора едкого натра до температуры реакционной смеси. Суммируя сказанное, можем составить полную математическую модель процесса:

$$\frac{\mathrm{d}V_{\mathrm{NaOH}}}{\mathrm{d}t} = \frac{2V_{\mathrm{p}}}{M_{\mathrm{NaOH}}} K_{\mathrm{p}} \cdot \mathrm{e}^{-\frac{\Delta E}{RT}} \cdot \overline{C}_{\mathrm{RSO}_{2}\mathrm{Cl}}^{i_{/s}} \cdot C_{\mathrm{Na}_{2}\mathrm{SO}_{s}}, \tag{19}$$

$$\frac{\mathrm{d}\left(C_{\mathrm{RSO}_{2}\mathrm{Na}}\cdot V_{\mathrm{p}}\right)}{\mathrm{d}t} = V_{\mathrm{p}}\cdot K_{\mathrm{p}}\cdot \mathrm{e}^{-\frac{\Delta E}{RT}}\cdot \overline{C}_{\mathrm{RSO}_{2}\mathrm{Cl}}^{z_{/a}}\cdot C_{\mathrm{Na}_{2}\mathrm{SO}_{2}},$$
(20)

$$\frac{\mathrm{d}(\overline{C}_{\mathrm{RSO}_{2}\mathrm{Cl}}\cdot V_{\mathrm{p}})}{\mathrm{d}t} = -V_{\mathrm{p}}K_{\mathrm{p}}\cdot\mathrm{e}^{-\frac{\Delta E}{RT}}\cdot\overline{C}_{\mathrm{RSO}_{2}\mathrm{Cl}}^{2/s}\cdot C_{\mathrm{Na}_{2}\mathrm{SO}_{2}},$$
(21)

163

$$\frac{\mathrm{d}(C_{\mathrm{Na}_{2}\mathrm{SO}_{3}}\cdot V_{\mathrm{p}})}{\mathrm{d}t} = -V_{\mathrm{p}}\cdot K_{\mathrm{p}}\cdot \mathrm{e}^{-\frac{\Delta E}{RT}}\cdot \overline{C}_{\mathrm{RSO}_{2}\mathrm{Cl}}^{2/3}\cdot C_{\mathrm{Na}_{2}\mathrm{SO}_{3}},$$
(22)

$$\frac{\mathrm{d}V_{\mathrm{p}}}{\mathrm{d}t} = \frac{\mathrm{d}V_{\mathrm{NaOH}}}{\mathrm{d}t}, \qquad (23)$$

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \frac{V_{\mathrm{p}} \cdot \Delta q_{1} \cdot K_{\mathrm{p}} \cdot \mathrm{e}^{-\frac{\mathrm{d}T}{RT}} \cdot \overline{C}_{\mathrm{RSO}_{3}\mathrm{CI}}^{2/3} \cdot C_{\mathrm{Na}_{3}\mathrm{SO}_{3}} - V_{\mathrm{p}} \cdot f \cdot K_{\mathrm{T}} (T - T_{0})}{(V_{\mathrm{p}} \cdot \varrho_{\mathrm{cM}} \cdot C_{\mathrm{p} \mathrm{cM}} + K_{a})} + \frac{\mathrm{d}V_{\mathrm{NaOH}}}{\mathrm{d}t} \cdot \frac{(T_{\mathrm{NaOH}} - T) \cdot C_{\mathrm{p} \mathrm{NaOH}} \cdot \varrho_{\mathrm{NaOH}}}{(V_{\mathrm{p}} \cdot \varrho_{\mathrm{cM}} \cdot C_{\mathrm{p} \mathrm{cM}} + K_{a})} - T \frac{\mathrm{d}V_{\mathrm{p}}}{\mathrm{d}t} - T \frac{\varrho_{\mathrm{cM}} \cdot C_{\mathrm{p} \mathrm{cM}}}{(V_{\mathrm{p}} \cdot \varrho_{\mathrm{cM}} \cdot C_{\mathrm{p} \mathrm{cM}} + K_{a})}, \qquad (24)$$

где Δq — тепловой эффект реакции, ккал/кмоль; f — удельная поверхность теплообмена, м²/м³; $K_{\rm r}$ — коэффициент теплопередачи, ккал/м² · град · с; $C_{\rm p}$ — удельная теплоемкость жидкости, ккал/кг · град; K_a — теплосодержание аппаратуры (количество тепла, расходуемое на нагрев аппаратуры), ккал/кг · град.

Начальные условия при t = 0:

$$V_{p} = V_{p}^{H},$$

$$\overline{C}_{RSO_{2}Cl} = \overline{C}_{RSO_{2}Cl}^{H},$$

$$C_{Na_{2}SO_{3}} = C_{Na_{2}SO_{3}}^{H},$$

$$C_{RSO_{2}Na} = 0,$$

$$V_{NaOH} = 0,$$

$$T = T^{H}.$$

Рис. 1. Принципиальная схема реактора: 1 — реактор, 2 — мешалка, 3 — сосуд Дьюара, 4 — термометр, 5 — бюретка, 6 — амперметр, 7 — вольтметр, 8 — рНметр, 9 — источник электронагрева.

Числовые значения параметров модели $\Delta q, K_{\rm P}, \Delta E, K_a,$ Кт определены на основе экспериментальных данных. При этом следует учесть, что в данном случае отдельное определение Δq калориметрическим способом затруднительно из-за необходимости непрерывного и неравномерного прибавления раствора едкого натра, а также небольшой скорости процесса в целом. Поэтому тепловой эффект мы определяли совместно с кинетическими параметрами реакции. Коэффициент теплопередачи в окружающую среду и теплосодержание аппаратуры определяли специальными опытами, применяя эталонные жидкости и электрический источник тепла в реакторе, а удельные теплоемкости реакционных смесей специальными калориметрическими опытами.

Опыты для экспериментального исследования кинетики процесса проводили в стеклянном реакторе емкостью 700 мл. Реактор был помещен в сосуд Дьюара и снабжен стеклянной турбинной мешалкой, работающей в режиме, обеспечивающем протекание процесса в кинетической области, термометром, электродами для измерения рН среды, бюреткой для подачи раствора NaOH и электронагревателем для определения теплоемкости реакционной смеси до и после кинетического опыта (рис. 1).

Рис. 2. Температура (а), концентрация п-толилсульфината натрия (б) и количество прибавленного раствора едкого натра (в) в зависимости от времени.

Числовые значения параметров Δq , $K_{\rm p}$, ΔE подбирали так, чтобы кривые дифференциальных уравнений (19)—(24) наилучшим образом аппроксимировали экспериментальные данные. Поиск наилучших значений констант проводили методом наименьших квадратов, минимизируя квадратные отклонения расчетных и экспериментальных данных, поиск минимума — методом вращающихся координат Розенброка. Рас-считанные на ЭВМ ЕС 1036 интегральные кривые температуры реакобразовавшегося *п*-толилсульфината ционной смеси, концентрации натрия и количества прибавленного раствора едкого натра, отвечающие наиболее вероятным значениям определяемых параметров, а также соответствующие экспериментальные данные приведены на рис. 2.

В результате исследования получено: теплота реакции $\Delta q = 66\,300$ ккал/кмоль, K_р=2,07 · 10⁹ (кмоль/м³)^{-2/3} · с⁻¹, ∆*E*/*R*=8970 ккал/кмоль.

ЛИТЕРАТУРА

 Boon-Long, S. C., Laguerie, C., Couderc, J. P. Mass transfer from suspended solids to a liquid in agitated vessels // Chem. Eng. Sci., 1978, 33, 813-819.
 Kulov, N. N., Nikolaishvili, E. K., Barabash, V. M., Braginski, L. N., Malysov, V. A., Zhavoronkov, N. M. Dissolution of solid particles suspended in agitated vessels // Chem. Eng. Commun., 1983, 21, 259-264.

- 3. Tournie, P., Laguerie, C., Couderc, J. P. Correlations for mass transfer between fluidized spheres and a liquid // Chem. Eng. Sci., 1979, 34, 1247-1255.
- Надь Э., Бликле Т., Уйхиди А. Влияние размера частиц и распределения их по размерам на скорость массообмена между твердой и жидкой фазами // Теорет. основы хим. технол., 1987, 21, № 5, 591—597.

Институт химии Академии наук Эстонии Поступила в редакцию 20/VII 1989

Tamila PETROVSKAJA, Guido RAJALO, Ilmar KIRJANEN, Ruth LUHAKOODER

NAATRIUM—p-TOLÜÜLSULFINAADI SÜNTEESIPROTSESSI KINEETIKA

Uuriti naatrium—p-tolüülsulfinaadi sünteesiprotsessi kineetikat, milles koos keemilise reaktsiooniga toimub faasidevaheline massiülekanne. Protsessi üldist kiirust limiteerib heterogeenne vahekompleksi moodustamise reaktsioon lahuses sisalduva sulfitiooni ja p-tolueensulfokloriidi tahkete osakeste vahel. On koostatud protsessi matemaatiline mudel (selle parameetrite arvväärtused määrati katseandmete põhjal) ning esitatud katsemetoodika ja kasutatud aparatuuri kirjeldus.

Tamila PETROVSKAYA, Guido RAJALO, Ilmar KIRJANEN and Ruth LUHAKOODER

THE KINETICS OF THE PROCESS OF SYNTHESIS OF SODIUM p-TOLYLSULFINATE

The kinetics of the process of synthesis of sodium p-tolylsulfinate has been studied. It involves a multistage chemical reaction with interphase mass transfer. The reaction rate is determined by the heterogenous stage of formation of the intermediate between the sulfite and p-toluene sulfonyl ions on the surface of the solid particles of toluene sulfonyl chloride. A mathematical model has been set up and numerical values of its parameters have been determined on the basis of experimental data. A description of the experiment and the apparatus used is presented.