УДК 541.8:532.13

2*

Марина ГРИНЧАК, Анне ЭЛЬВЕЛЬТ, Эне КИРЬЯНЕН

ИЗБЫТОЧНЫЕ ВЯЗКОСТИ И ОБЪЕМЫ БИНАРНЫХ СМЕСЕЙ 1-БУТАНОЛА С ТЕТРАХЛОРМЕТАНОМ

(Представил О. Киррет)

Данные по кинематической вязкости и плотности бинарных смесей позволяют получить представление о характере межчастичных взаимодействий в растворе.

Задачей данной работы являлось политермическое (в интервале температур 293,15—323,15 К) исследование вязкости и плотности системы 1-бутанол—тетрахлорметан во всем диапазоне составов. Эта система представляла интерес для отработки методики эксперимента и математического описания результатов, так как ее компоненты сильно различаются по плотности и вязкости. Кроме того, молекулы тетрахлорметана и 1-бутанола различны по геометрическим параметрам (форме и размерам) и степени ассоциации в чистом виде.

1-Бутанол квалификации «хч» (для хроматографии) применялся без дополнительной очистки. Тетрахлорметан очищен ректификацией, чистота его определялась хроматографически и сравнением измеренных для ряда температур плотностей с данными [¹] (табл. 1).

Плотности (q) чистых компонентов и смесей 1-бутанола с тетрахлорметаном определяли пикнометрическим методом при температурах 293,15, 298,15, 308,15 и 318,15 К. Использовали пикнометры с градуированной шейкой емкостью ~2,5 мл. Воспроизводимость измерений составляла ±0,2 кг/м³. Температура водяного термостата (емкостью ~5 л) контролировалась ртутным термометром с точностью ±0,05 К.

В исследованной нами системе зависимость плотности смесей от концентрации выражена уравнением прямой

$$\varrho = a + b x_1, \tag{1}$$

где x_1 — мольная доля первого компонента в растворе, a и b — эмпирические коэффициенты, рассчитанные методом наименьших квадратов. Их значения наряду с результатами измерения плотностей и стандартными ошибками аппроксимации (δ) приведены в табл. 1.

Результаты корреляции плотностей использовали для расчета избыточного мольного объема (V^E) по уравнению

$$V^{E} = M_{1}x_{1}\left(\frac{1}{\varrho} - \frac{1}{\varrho_{1}}\right) + M_{2}x_{2}\left(\frac{1}{\varrho} - \frac{1}{\varrho_{2}}\right), \qquad (2)$$

где M_1 и M_2 — молекулярная масса компонентов, x_1 и x_2 — их мольные доли, ϱ_1 и ϱ_2 — экспериментально измеренные плотности чистых компонентов, ϱ — плотности смесей, аппроксимированные уравнением (1).

Концентрационные зависимости избыточных мольных объемов исследованной нами системы приведены на рис. 1 и в табл. 1. Величина V^E положительна при концентрации спирта в растворе, меньшей 0,88, т.е. в этом интервале концентраций происходит увеличение объема смесей. При разбавлении чистого спирта до $x_1 = 0,88$ тетрахлорметаном наблюдается сжатие объема. Вид графика $V^E - x$ исследуемой системы свидетельствует о конкуренции различных процессов (физического и хими-

ческого), дающих положительный эффект в VE, и структурных изменений, вклад которых отрицателен. Температурный коэффициент изменения V^E положителен, т.е. в области, обогащенной спиртом, повышение температуры уменьшает абсолютное значение минимума, а в области положительных значений величина V^E возрастает.

Таблица 1

в системе 1-бутанол(1)—тетрахлорметан(2)											
	Q	VE	ę	VE	ę	VE	Q	VE			
<i>x</i> ₁	Contrant	in union	March 19	Темпера	атура, К		1100-100	a she			
in the second	293	,15	298,	,15	308,	15	318	3,15			
0 0,091 0,211 0,382 0,386 0,509 0,846 0,891 0,913 0,935 1,0	$\begin{array}{c} 1592,9\\ 1592,8\\ -1592,8-\\ 1521,8\\ 1430,2\\ 1296,0\\ 1293,8\\ 1195,0\\ 936,3\\ 899,7\\ 881,9\\ 863,8\\ 809,5\\ 809,5-\\ -810,0[^1] \end{array}$	0 0,1383 0,3507 0,5512 0,5501 0,6025 0,1395 0,0115 0,0964 0,1967 0	1583,3 1583,9	0 0,1518 0,3713 0,5594 0,5720 0,6198 0,1413 -0,0174 -0,1127 -0,2021 0	$\begin{array}{c} 1564,0\\ 1561,8-\\ -1565,0[^1]\\ 1493,9\\ 1404,6\\ 1273,7\\ 1271,4\\ 1175,0\\ 922,4\\ 886,1\\ 869,1\\ 851,4\\ 798,0\\ 797,8-\\ -798,5[^1]\end{array}$	$\begin{array}{c} 0\\ 0,1798\\ 0,4133\\ 0,6185\\ 0,6239\\ 0,6789\\ 0,1647\\ -0,0090\\ -0,1037\\ -0,2025\\ 0\end{array}$	$\begin{array}{c} 1544,1\\ 1543,9-\\ -1545,7[1\\ 1475,2\\ 1387,1\\ 1258,6\\ 1256,1\\ 1161,2\\ 912,9\\ 877,1\\ 860,4\\ 842,8\\ 790,4\\ 790,0-\\ -791,2[1] \end{array}$	0 0,2012 0,4438 0,6717 0,6741 0,7356 0,2033 			
a	1593,7	San Ko	1583,9	nile and the	1564,3	REAL	1544,4	LOHE THE			

773,38

1,2

761,33 1,3

Плотности (*e*, кг/м³), избыточные мольные объемы (V^E, см³/моль), коэффициенты уравнения (1) (*a* и *b*) и стандартная ошибка аппроксимации (δ)

749,09

1,3

Рис. 1. Концентрационные зависимости избыточного мольного объема в системе 1-бутанол(1)-тетрахлорметан(2) при различных температурах.

Рис. 2. Концентрационные зависимости избыточной кинематической вязкости в системе 1-бутанол(1)-тетрахлорметан(2) при различных температурах (О - по данным настоящей работы, • — по данным [1]).

b

σ

779,47

1,3

157

Таблица 2

NU KUSEN	Температура, К									
<i>x</i> ₁	293,15	298,15	303,15	308,15	313,15	318,15	323,15			
0	0.621	0.578	0.544	0,514	0,486	0,460	0,436			
0.091	0.672	0,631	0,594	0,555	0,509	0,484	0,454			
0.211	0,758	0,702	0,652	0,609	0,569	0,534	0,502			
0.386	1.010	0,924	0,847	0,781	0,721	0,672	0,625			
0,509	1,310	1,191	1,079	0,977	0,891	0,821	0,755			
0.558	1,451	1,299	1,171	1,062	0,964	0,884	0,809			
0,778	2,352	2,078	1,852	1,646	1,475	1,329	1,203			
0.888	2,970	2,617	2,321	2,057	1,830	1,641	1,477			
1,0	3,629	3,197	2,824	2,500	2,220	1,985	1,778			

Кинематическая вязкость в системе 1-бутанол(1)-тетрахлорметан(2)

Сравнение наших и данных [¹] по избыточным мольным объемам показало, что результаты наших измерений приблизительно в два раза больше. Это можно объяснить сильной чувствительностью величины V^E к ошибкам в экспериментальных данных, обусловленным сильным различием плотностей компонентов и малым отклонением от идеальности свойств образуемых ими смесей.

Кинематические вязкости чистых жидкостей и их смесей, измеренные по методике [2], приведены в табл. 2. Рассчитанные на основе этих данных избыточные кинематические вязкости (v^E) в зависимости от состава раствора сопоставлены с v^E , вычисленными по справочным данным о плотности и динамической вязкости [¹] для температур 298,15, 308,15, 318,15 и 328,15 К (рис. 2). Расхождение не превышает погрешности наших опытов.

Таблица 3

All and a second										
Вели- чина	Коэф- фициент	Температура, К								
		293,15	298,15	303,15	308,15	313,15	318,15	323,15		
v ^E , cCT	a_0 a_1 a_2 a_3 KK^* σ^{**}	$\begin{array}{c}3,3727\\0,4275\\ 0,6253\\ 0,1862\\ 0,993\\ 6\cdot 10^{-3}\end{array}$	$\begin{array}{r}2,9167\\ -0,3443\\ 0,5293\\ -0,0436\\ 0,991\\ 8\cdot 10^{-3}\end{array}$	$\begin{array}{r}2,5373\\ -0,2816\\ 0,5041\\ -0,0876\\ 0,988\\ 8\cdot 10^{-3}\end{array}$	$\begin{array}{c}2,2082\\ -0,2881\\ 0,3762\\ -0,0319\\ 0,992\\ 5\cdot 10^{-3}\end{array}$	$\begin{array}{r} -1,9247\\ -0,3821\\ 0,1996\\ 0,2817\\ 0,996\\ 3\cdot 10^{-3}\end{array}$	$\begin{array}{c}1,6761\\ -0,2988\\ 0,1687\\ 0,1365\\ 0,993\\ 3\cdot 10^{-3}\end{array}$	$\begin{array}{c}1,4706\\ -0,3094\\ 0,1329\\ 0,2452\\ 0,992\\ 3\cdot 10^{-3}\end{array}$		
[[n(vM)]	a ₀ a ₁ a ₂ a ₃ KK σ	$\begin{array}{c} -0.3692\\ 0.9345\\ 0.1992\\ -0.3939\\ 0.997\\ 7\cdot 10^{-3} \end{array}$	$\begin{array}{c} -0,3776\\ 0,9499\\ 0,2763\\ -0,6317\\ 0,992\\ 8\cdot 10^{-3}\end{array}$	$\begin{array}{c} -0,4019\\ 0,9337\\ 0,3389\\ -0,7008\\ 0,989\\ 9\cdot 10^{-3}\end{array}$	$\begin{array}{r} -0,4231\\ 0,8186\\ 0,2846\\ -0,5255\\ 0,992\\ 7\cdot 10^{-3}\end{array}$	$\begin{array}{c} -0,4375\\ 0,5330\\ 0,0807\\ 0,1370\\ 0,999\\ 3\cdot 10^{-3}\end{array}$	$\begin{array}{c} -0,4305\\ 0,5637\\ 0,1182\\ -0,0545\\ 0,998\\ 4\cdot 10^{-3}\end{array}$	$\begin{array}{r}0,4351\\ 0,4333\\ 0,0789\\ 0,1917\\ 0,999\\ 3\cdot 10^{-3}\end{array}$		

Коэффициенты уравнения (3) и результаты оценки надежности аппроксимации

* КК — коэффициент корреляции.

среднеквадратичное отклонение расчетных данных от экспериментальных.

Рис. 3. Концентрационные зависимости избыточного логарифма молярной вязкости (а) и теплот смешения (б) в системе 1-бутанол(1)—тетрахлорметан(2) при различных температурах (сплошная линия — по данным настоящей работы, пунктир — по данным [^{1,4}]).

Концентрационная зависимость уЕ аппроксимирована уравнением

$$\mathbf{v}^{E} = x_{1} x_{2} \sum_{j=1}^{h} a_{j-1} (2x_{1} - 1)^{j-1}, \tag{3}$$

коэффициенты которого (a_{i-1}) совместно с оценкой надежности аппроксимации приведены в табл. 3.

Для анализа межчастичных взаимодействий рекомендуется [³] величина молярной вязкости

$$\eta_M \equiv \eta / \Sigma N \equiv \nu M \tag{4}$$

или ее логарифм, где η и v — динамическая и кинематическая вязкость смеси, N — число молей в 1 л растворителя.

Концентрационная зависимость отклонения от аддитивности логарифма молярной вязкости * аппроксимирована также уравнением (3), коэффициенты которого приведены в табл. 3.

Сравнение (рис. 3) показывает качественную сходимость наших данных с литературными [¹]: S-юбразная кривая концентрационной зависимости с минимумом в области, обогащенной тетрахлорметаном, и относительно небольшим максимумом в области с большим содержанием спирта. Количественное расхождение кривых (рис. 3, а) объясняется, очевидно, различием наших и литературных данных по избыточным мольным объемам, погрешности измерения которых накладываются на погрешности измерения динамической вязкости [¹].

Наличие минимума на кривой $[\ln (vM)]^E - x_1$ в области малой концентрации спирта согласуется с крутым подъемом кривой концентрационной зависимости энтальпии смешения в этой системе (рис. 2, б), обусловленным разрывом водородных связей между молекулами спирта при большой концентрации тетрахлорметана. Температурное смещение кривых $[\ln (vM)]^E$ и H^E также объясняется прежде всего изменением интенсивности разрушения ассоциатов спирта при изменении температуры.

^{*} Назовем его избыточным логарифмом молярной вязкости [ln (vM)]E.

Таблица 4

Энергетические параметры активации вязкого течения системы 1-бутанол(1)тетрахлорметан(2)

<i>x</i> ₁	Δ <i>H</i> _η , кДж моль	Carlo and	ΔS _η , Дж						
		Температура, К							
		293,15	298,15	303,15	308,15	313,15	318,15	323,15	моль · град
0	9,172	13,335	13,406	13,477	13,548	13,619	13,690	13,761	-14,2
0,091	10,476	13,437	13,487	13,538	13,588	13,639	13,689	13,740) —10,1
0,211	10,794	13,550	13,597	13,644	13,691	13,738	13,785	13,832	2 —9,4
0,386	12,616	13,994	14,017	14,041	14,064	14,088	14,111	14,135	5 —4,7
0,509	14,572	14,425	14,423	14,420	14,418	14,415	14,413	14,410	0,5
0,558	15,306	14,573	14,560	14,548	14,535	14,523	14,510	14,498	2,5
0,778	17,641	15,325	15,286	15,246	15,207	15,167	15;128	15,088	3 7,9
0,888	18,391	15,664	15,618	15,571	15,525	15,478	15,432	15,385	9,3
1,0	18,768	15,866	15,816	15,767	15,717	15,668	15,618	15,569	9,9

В области небольших концентраций тетрахлорметана разрыв части водородных связей между молекулами спирта при 298,15 К компенсируется ван-дер-ваальсовыми взаимодействиями между разнородными молекулами. Повышение температуры ведет к возрастанию эндотермичности эффекта и уменьшению избыточного логарифма молярной вязкости, поскольку степень ассоциации спирта при этом уменьшается в растворе в большей степени, чем в чистом спирте.

На основании полученных экспериментальных данных по формуле Эйринга [⁵] рассчитаны термодинамические параметры активации вязкого течения

$$\ln(vM) = \left[\ln(hN_A) - \frac{\Delta S_{\eta}}{R}\right] + \frac{\Delta H_{\eta}}{RT};$$
(5)

где h — постоянная Планка, N_A — число Авогадро, R — газовая постоянная, ΔS_n и ΔH_n — энтропия и энтальпия активации вязкого течения.

Величины ΔH_{η} и ΔS_{η} (табл. 4) определены в предположении линейной зависимости ln (vM) = f(T) по ее наклону и начальной ординате. По ним рассчитана свободная энергия активации вязкого течения

$$\Delta G_{n} = \Delta H_{n} - T \Delta S_{n}. \tag{6}$$

Таблица 5

Величина избыточной свободной энергии активации вязкого течения ΔG^{E}_{η} (Дж/моль) в системе 1-бутанол(1)—тетрахлорметан(2)

CEDRAL BASS	The state of the second se	A DESCRIPTION OF THE OWNER.	and the second of	Ch. Dettinged	TENER THE	high states in a	India Marian				
and a bridge	Температура, К										
<i>x</i> ₁	293,15	298,15	303,15	308,15	313,15	318,15	323,15				
0	_	-		_		_					
0,091	-128	-138	-147	-157	-166	-176	-185				
0,211	-319		-316	-315		-312					
0,386	-318	-319					-324				
0,509	-198	-210	-223	-234	-247	-258	-271				
0,558	-174	-191	-207	-223	-239	-256	-272				
0,778	21	5	-13	-28	-46	-62	80				
0,888	81	72	60	51	39	30	18				
1,0	-	-		by way - h		1011-0	1 10 1- 1				

Энтропия активации вязкого течения в области эквимолярной точки меняет знак с отрицательного на положительный.

Добавление к тетрахлорметану 1-бутанола ведет к увеличению вклада энтальпийной составляющей в свободную энергию активации течения (отношение $\Delta H_{\rm n}/\Delta G_{\rm n}$). При $x_1 > 0.5$ этот вклад возрастает с увеличением температуры.

Величина избыточной свободной энергии активации вязкого течения ΔG_{E}^{e} (табл. 5) имеет S-образный вид с минимумом для смесей, обогащенных тетрахлорметаном. В области малых концентраций тетрахлорметана на кривой $\Delta G_n^E = f(x_i)$ имеется максимум, связанный, возможно, с образованием комплексов тетрахлорметана с 1-бутанолом при одновременном сохранении водородных связей между молекулами спирта. С увеличением содержания тетрахлорметана в смеси происходит постепенное разрушение структуры спирта, проявляющееся в уменьшении вязкости раствора. Величина ΔG_n^E становится отрицательной, достигая минимума в смеси с содержанием тетрахлорметана ~0,6 мольных долей.

Результаты проведенной работы показали сложный характер изотерм молярной вязкости и мольного объема системы 1-бутанол-тетрахлорметан и определяющее влияние на них процессов ассоциации спирта.

ЛИТЕРАТУРА

- 1. Крестов Г. А., Афанасьев В. Н., Ефремова Л. С. Физико-химические свойства бинарных растворителей. Л., 1988.
- Гринчак М., Хярсинг Н., Кудрявцева Л. Кинематическая вязкость спиртоуглеводо-родных систем // Изв. АН ЭССР. Хим., 1988, 37, № 2, 122—128.
 Давыдова О. И., Афанасьев В. Н., Жуков, Б. А., Крестов Г А. Изучение вязкости системы нитрометан—ацетонитрил // Ж. физ. хим., 1986, 60, № 4, 982—984.
 Белоусов В. П., Морачевский А. Г. Теплоты смешения жидкостей. Л., 1970, 88.
 Bloomfeld, V. A., Dewan, R. K. Viscosity of liquid mixtures // J. Phys. Chem., 1971, 75, N 20, 3113—3119.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 21/III 1989

Marina GRINTŠAK, Anne ELVELT, Ene KIRJANEN

1-BUTANOOLI JA TETRAKLOORMETAANI BINAARSETE SEGUDE LIIGVISKOOSSUS JA LIIGMAHT

Mõõdeti nimetatud süsteemi tihedust ja kinemaatilist viskoossust sõltuvalt kontsentratsioonist temperatuuri vahemikus 293,15–323,15 K. Eksperimendi tulemuste põhjal arvutati molaarse liigviskoossuse, liigmahu ja vedeliku viskoosse voolamise aktivatsiooni ener-geetilised parameetrid. Arvutatud suurused näitasid, et assotsiatsioon avaldab märgatavat mõju lahuse viskoossuse ja liigmahtude isotermidele.

Marina GRINCHAK, Anne ELVELT and Ene KIRJANEN

EXCESS VISCOSITY AND VOLUME OF BINARY MIXTURES OF 1-BUTANOL AND CARBON TETRACHLORIDE

The density and kinematic viscosity of the 1-butanol-carbon tetrachloride system over the whole composition range at 293.15–323.15 K were used to calculate the excess molar volume, molar viscosity and excess free energy of the flow activation. The results indicate that the association processes influence considerably the iso-therms of the solution viscosity and excess volumes.