УДК 543.544.2:547.284

Jaak ARRO and Vello TALVES

THE RETENTION BEHAVIOUR OF KETONES AND OTHER ORGANIC COMPOUNDS ON SEPARON SGX C18 COLUMN BY USING METHANOL-WATER ELUENTS

(Presented by U. Lille)

More than 30 compounds, mostly ketones, were subjected to investigation to identify oxygen-containing compounds in shale oil and other mixtures.

A Laboratorni Přistroje (Prague, Czechoslovakia) HPLC System with a high-pressure pump HPP 4001, a UV-VIS detector LCD 2563 (with fixed wavelengths), a linear recorder TZ 4601, an integrator IT2 and a 10 μ l sample loading loop AD-1 (Special Designing Bureau, Estonian Academy of Sciences) were used. The spectrophotometric detector was used at 254 and 290 nm. The SEPARON SGX C18 (particle diameter 7 μ m) glass column (Laboratorni Přistroje) was thermostated at 35±0.1 °C using a water jacket and eluated with methanol-water (40–100% of methanol) at a flow rate of 0.5 cm³/min. The column pressure varied from 4.2 to 16 MPa depending on the mobile phase composition.

Samples were supplied by the following companies: methyl ethyl ketone by Reanal (Hungary), ethyl hepthyl ketone by Schuchart (München, FRG), acetophenone, camphor, limonene by VEB Laborchemie (Apolda, GDR), and other compounds by Reakhim (USSR). 2,5-Dimethylresorcinol was separated from the oil shale alkyl resorcinol fraction and purified in the Institute of Chemistry, Tallinn. The samples were dissolved in the mobile phase or in pure methanol, aliphatic ketones up to 0.1—1 and aromatic compounds up to 0.001—0.1 wt. %. Methanol was purified and dried by rectification. Bidistilled water was used. The mobile phase was mixed with separately measured component volumes.

The retention time (t_R) was measured using an integrator (sec). The t_R value for unretained sample molecules (t_0) was determined as the elution time of Co (NO₃)₂ (measured at 436 nm). The column void volume was calculated as 0.76 cm³.

The retention behaviour of ketones and other organic compounds was examined by using the capacity factor k'. In order to investigate the effect of eluent contents on k', some empirical relationships were examined

$$lnk' = a + b\varphi, \tag{1}$$

$$ln R' = a + oM, \tag{2}$$

$$lnR' = a + b\varphi + c\varphi^2, \tag{3}$$

where φ — the volume fraction, and M — the molarity of methanol in the mobile phase.

According to [1] c in. (3) must be proportional to the molecular volume (V_m) of substances. It is difficult to find or calculate the values of V_m for solid compounds, because the critical volumes were used $(V_c \approx qV_m)$ and in case of need calculated according to Lydersen [2]. Formula 3 can be modified as follows:

$$lnk' - c\varphi^2 = lnk' - zV_c\varphi^2 = a + b\varphi.$$
⁽⁴⁾

1	5	1	٤
1	1		ŝ
	Č	2	i

Jourse Vol. % a -b $S_{\rm h}$ a -b	Soluta	Methanol		Formula 1		H	ormula 2			Form	ıla 4	
I 2 3 4 5 6 7 8 9 10 11 programme buildranme buildranme extrantise buildranme extrantise method met	Solute	vol., %	a	q-	Sk	a	q-	Sk	a	<i>q</i> -	C	S _h
	1	1 2	3	4	5	6	7	8	6	10	11	12
$ \begin{array}{llllllllllllllllllllllllllllllllllll$												
	-brohanone	40-90	0.24	1.90	0.027	2.20	1.17	0.020	0.82	3.85	1.53	0.020
Heatone transme 40-90 371 528 0.164 9.62 340 0.156 489 877 271 Pertanone Heptanone Heptanone 40-90 527 0.115 1139 307 321 377 321 377 321 377 321 377 321 377 321 3217 321 3217	-hutanone	40-90	1.20	2.81	0.053	4.40	1.83	0.025	2.06	5.45	1.95	0.026
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	hevanone	40-90	3.71	5.28	0.164	9.62	3.40	0.156	4.89	8.97	2.74	0.042*
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	mothyl-9-pentanone	40-90	3.21	4.76	0.184	8.44	3.03	0.065	4.36	8.37	2.71	0.031*
$ \begin{array}{c} \label{eq:constraint} \\ \mbox{relation:} \\ \mbox{relation:} \\ \mbox{cutation:} \\ $	-memory -z-penanone	40-100	4.85	6.22	0.710	11.88	4.06	0.309	6.24	10.51	3.07	0.037*
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-ueptanone	UD UV	4 08	6.56	0175	11 59	66 8.	0.997	6.15	10.52	3.07	0.204
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-neptanone	00-04	6.54	7.94	0.527	14.40	4.77	0.502	7.85	12.43	3.54	0.218*
$\begin{array}{llllllllllllllllllllllllllllllllllll$	-octanone	76_00	609	8 00	0115	20.43	670	0.092	9.61	14.62	3.94	0.098
$\begin{array}{llllllllllllllllllllllllllllllllllll$	-nonanone	00 09	6.64	7.80	166.0	17 95	200	0.209	8.88	13.88	3.94	0.190
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-nonanone	00 00	8.73	0.01	026.0	20.06	7 44	0.543	11 21	16.52	4.34	0.287
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-decanone	00 02	0.77	10.67	0.995	96.61	8 59	0.304	19.89	18.30	4 75	0.348
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-undecanone	76 00	0.54	10.65	0330	97.93	8 70	0.970	19.76	18.47	4.75	0.290
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-undecanone	75 00	11 85	19.65	0 743	39 03	10.47	0.604	15.63	21.84	5.55	0.650
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	tridecanone	80-100	15.39	15.23	2.211	43.74	13.60	2.048	20.69	27.32	6.72	2.081
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-nexauecanone	40-00	151	3.05	0.058	4.77	16.1	0.019	2.30	5.62	1.96	0.024
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	yciopeiitailoile	40-90	2.39	3.88	0.134	6.58	2.45	0.054	3.33	6.89	2.28	0.073
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	methylcvelohexanone	40-90	2.48	3.90	0.116	6.66	2.46	0.044	3.57	7.47	2.69	0.045
ctophenone $40-90$ 3.60 5.14 0.180 8.98 3.19 0.079 4.58 8.37 2.47 copiophenone $40-90$ 6.14 7.57 0.453 11.70 4.01 0.298 6.09 10.25 2.88 utyrophenone $60-90$ 6.93 8.17 0.128 18.40 6.05 0.174 8.96 13.70 3.68 alerophenone $60-90$ 6.93 8.17 0.128 18.40 6.05 0.174 8.96 13.70 3.68 alerophenone $40-90$ 5.42 7.54 0.835 13.19 4.62 0.205 6.95 11.74 3.28 alerophenone $40-90$ 5.42 7.54 0.835 13.19 4.62 0.205 6.95 13.70 3.68 alerophenone $40-90$ 7.36 8.89 2.518 16.58 5.49 0.837 9.14 14.75 13.70 $3.4iphenyl-2-propanone7.0-901.533.2230.0326.700.2284.620.2633.663.4iphenyl-2-propanone7.0-901.533.2230.0326.700.0294.5710.884.763.4iphenyl-2-propanone60-907.430.88413.884.620.2632.4514.046.00-906.001.0798.800.27011.4768.702.6012.633.974.00-906.000.021$	namphor succession of the second seco	40-90	5.67	6.93	0.882	13.08	4.35	0.748	7.16	11.73	3.63	0.217*
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	retonhenone	40-90	3.60	5.14	0.180	8.98	3.19	0.079	4.58	8.37	2.47	0.040*
utyrophenone $40-90$ 6.14 7.57 0.453 13.66 4.56 0.527 7.36 11.74 3.28 utyrophenone $60-90$ 6.93 8.17 0.128 18.40 6.05 0.174 8.96 13.70 3.68 hydroxybenzophenone $40-90$ 5.42 7.54 0.835 13.19 4.62 0.527 7.36 11.74 3.28 hydroxybenzophenone $40-90$ 5.42 7.54 0.835 13.19 4.62 0.256 13.70 3.68 hydroxybenzophenone $40-90$ 7.36 8.83 2.155 15.85 5.24 1.478 8.56 13.70 3.68 $3.4iphenyl-2-propanone40-907.368.832.516515.870.2377.3611.743.283.4iphenyl-2-propanone40-907.368.892.51816.585.490.8379.1414.754.763.4iphenyl-2-propanone40-906.067.430.88413.884.620.7287.2912.423.81100remone60-9010.7111.130.74426.758.371.86714.0419.985.8060-906.187.020.24915.978.371.86714.0419.985.9660-906.187.020.24915.978.300.27013.7220.996.2860-90<$	ronionhenone	4090	4.97	6.52	0.457	11.70	4.01	0.298	6.09	10.25	2.88	0.057*
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	utvronhenone	40-90	6.14	7.57	0.453	13.66	4.56	0.527	7.36	11.74	3.28	0.229*
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	alaronhanona	06-09	6.93	8.17	0.128	18.40	6.05	0.174	8.96	13.70	3.68	0.104
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	enzonhenone	40-90	6.96	8.38	2.155	15.85	5.24	1.478	8.56	13.58	3.96	0.137*
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	hudrownhanzonhanona	40-90	5.42	7.54	0.835	13.19	4.62	0.205	6.95	12.63	3.97	0.282
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-inyuroxyuciizopuciuoio	40-90	7.36	8.89	2.518	16.58	5.49	0.837	9.14	14.75	4.50	0.166*
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	2 dishonul 9 propanone	00-02	1.53	3.23	0.032	6.70	2.60	0.029	4.57	10.88	4.76	0.026
$ \begin{array}{c} \label{eq:conversion} \mbox{Function} \\ \mbox{fluorenone} \\ \mbox{fluorenone} \\ \mbox{illuorenone} \\ \mbox{isobutylanthraquinone} \\ \mbox{fluorenone} \\ $	o-dipnenyi-z-propanone	40-00	6.06	7.43	0.884	13.88	4.62	0.728	7.59	12.42	3.81	0.270*
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$		00 01	2.09	8.23	3.112	15.70	5.11	0.838	8.61	13.28	3.87	1.029
$\begin{array}{ccccccc} \hline 1000000 \\ 100000000000000000000000000$	inchriterienthreaminene	00-09	10.71	11.13	0.744	26.75	8.37	1.867	14.04	19.98	5.80	1.243
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-isobutylantin ayunone	06-02	9.92	11.07	0.159	27.30	8.80	0.270	13.72	20.63	5.96	0.256
ibutyiphthalate 60-90 10.11 11.47 0.223* 26.44 8.56 0.998 13.67 20.99 6.28	-vanthenone	06-09	6.18	7.02	0.249	15.97	5.18	0.072	8.32	12.87	3.93	0.102
	ibutyIphthalate	06-09	10.11	11.47	0.223*	26.44	8.56	0.998	13.67	20.99	6.28	0.817

	10-01-	1.01			- Statistics	101	1 ALEAN	12.12		I and I (continued)
1	2	3	4	5	9	7	8	6	10	11	12
	· · · · · · · · · · · · · · · · · · ·	TT LO	- All - Lat	201.00	100.22	120.00	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				1.000
dioctylphthalate	75-90	19.14	19.75	2.738	51.71	16.22	3.609	25.56	35.39	9.49	3.399
2,5-dimethylresorcinol	40-90	2.54	5.68	0.038*	8.47	3.52	0.093	3.67	9.31	2.73	0.080
benzene	40-90	4.59	5.76	0.049*	10.52	3.53	0.615	5.85	8.23	1.90	0.292
toluene	40-90	5.94	6.97	0.088*	13.29	4.34	1.737	6.89	10.02	2.31	0.777
anthracene	75-90	9.19	9.76	0.337	25.50	8.09	0.267	11.96	16.46	4.04	0.293
phenanthrene	75-90	9.04	9.65	0.267	25.07	7.97	0.209	11.78	16.33	4.04	0.229
limonene	06-02	10.95	11.40	0.249	29.22	9.19	0.646	13.26	17.13	3.53	0.443

* The best regression at a confidence level of 95% or more.

Comparison of experimental and published k' values

φ	k' _{exp}	k' ret
0.3 0.4 0.6	$\begin{array}{c} 2\text{-propanone} \\ 0.82^{*} \\ 0.63 \pm 0.02 \\ 0.36 \pm 0.03 \end{array}$	0.53^{a} ; 0.36^{b} ; 0.33^{c} ; 0.38^{d} [³] 0.50^{a} [³]; 0.36^{e} [⁴] 0.26^{a} [³]; 0.23^{e} [⁴]
0.3 0.4 0.6 0.7 0.8	2-butanone 1.82^* 1.23 ± 0.09 0.59 ± 0.02 0.46 ± 0.02 0.35 ± 0.03	1.19 <i>a</i> ; 0.71 <i>b</i> ; 0.57 <i>c</i> ; 0.61 <i>d</i> [³] 0.96 <i>a</i> [³] 0.51 <i>a</i> [³]; 0.39 <i>e</i> [⁴] 0.32 <i>e</i> [⁴] 0.22 <i>e</i> [⁴]
0.3 0.4 0.6 0.7 0.8	2-hexanone 11.5^* 5.60 ± 0.19 1.63 ± 0.04 1.00 ± 0.05 0.59 ± 0.01	8.78 <i>a</i> ; 3.57 <i>b</i> ; 2.13 <i>c</i> ; 1.73 <i>d</i> [³] 5.53 <i>a</i> [³]; 4.2 <i>e</i> [⁴] 1.60 <i>e</i> [⁴]; 1.47 <i>a</i> [³] 0.77 <i>a</i> [³]; 0.77 <i>e</i> [⁴] 0.39 <i>e</i> [⁴]
0.3 0.4 0.6 0.7 0.8	2-octanone 84.7^* 30.5 ± 3.2 5.29^* 2.39 ± 0.13 1.22 ± 0.02	11.47 c ; 4.88 d [³] 24 e [⁴] 5.0 e [⁴]; 5.73 a [³] 2.11 a [³]; 2.1 e [⁴] 1.16 a [³]; 0.81 e [⁴]
0.7 0.8	2-undecanone 9.50 ± 0.13 3.59 ± 0.12 acetophenone	9.2 e [4]; 10.3 a [3] 3.84 a [3]; 2.4 e [4]
0.1 0.15 0.2 0.3	43.3* 29.4* 20.2* 9.89*	78.24r [⁵] 22.44f [⁶] 31.28r [⁵] 9.96 <i>a</i> ; 4.40 <i>b</i> ; 2.92 <i>c</i> ; 2.96 <i>d</i> [³]; 9.60 <i>f</i> [⁷]; 7.53 <i>g</i> [⁸]; 14.61 <i>r</i> [⁵]
0.4 0.45 0.5	5.16 ± 0.09 3.72^{*} 2.75^{*}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.6	1.53 ± 0.01	5.206 r [⁵] 1.35 a [³]; 2.45 m ; 2.33 m [¹⁰]; 2.44 o [¹³]; 1.08 g [⁸]; 0.70 p [¹²]; 0.62 p [¹⁴]; 0.93 g [¹¹]; 1.05 f [¹⁵]; 1.836 r [⁵]
0.7	0.92 ± 0.04	0.72a [3]; $1.38m$; $1.39m$ [10]; $0.57a$ [8]; $0.40n$ [12]; $0.32n$ [14]; $0.51a$ [11]; $1.061r$ [5]
0.75 0.8	$0.73 \pm 0.04 \\ 0.62 \pm 0.02$	$\begin{array}{c} 1.04^{m}; \ 1.11^{m} [1^{0}]; \ 1.35^{o} [1^{3}]; \ 0.41^{g} [8]; \ 0.39^{g}; \ 0.35^{g} [1^{1}] \\ 0.45^{a} [3]; \ 0.78^{m}; \ 0.90^{m} [1^{0}]; \ 0.684^{r} [5]; \ 0.30^{g} [8]; \\ 0.00^{g} [1^{1}] \end{array}$
0.85 0.9 1.0	0.44 ± 0.01 0.39 ± 0.01 0.267^*	$\begin{array}{c} 0.18^{\rho} \left[{}^{14} \right]; \ 0.29^{\varrho} \left[{}^{14} \right]; \ 0.29^{\varrho}; \ 0.21^{\varrho} \left[{}^{11} \right]; \ 0.21^{\varrho} \left[{}^{8} \right] \\ 0.44^{m}; \ 0.62^{m} \left[{}^{10} \right]; \ 0.16^{\varrho} \left[{}^{8} \right]; \ 0.10^{\rho} \left[{}^{14} \right]; \ 0.486^{r} \left[{}^{5} \right] \\ 0.351^{r} \left[{}^{5} \right] \end{array}$
0.15 0.3 0.4	propiophenone 101* 26.4* 11.7±0.3	66.7^{i} [⁶] 25.9 ^a ; 9.24 ^b ; 5.43 ^c ; 4.76 ^d [³]; 25.8 ⁱ [⁷] 10.63 ⁱ [⁷]; 13.1 ^a [³]; 10.57 ^h ; 9.18 ⁱ ; 7.62 ⁱ ; 6.99 ⁱ ; 20.53 ^k ; 3.21 ⁱ [³]; 9.02 ^a [¹];
0.45 0.5 0.6 0.7 0.8	$7.87^{*} \\ 5.39^{*} \\ 2.65 \pm 0.06 \\ 1.37 \pm 0.04 \\ 0.71 \pm 0.03$	$\begin{array}{c} 5.21^{+}[-]; \ 5.01s; \ 5.02s [^{+}] \\ 6.45i [^{7}] \\ 4.37i [^{7}]; \ 4.04a [^{3}]; \ 4.08g [^{11}] \\ 2.58a [^{3}]; \ 4.01o [^{13}]; \ 1.69g; \ 1.70g [^{11}] \\ 1.07a [^{3}]; \ 0.86g [^{11}] \\ 0.61a [^{3}]; \ 0.45g; \ 0.46g [^{11}] \end{array}$

Table 2 (continued)

φ	$k'_{ m exp}$	k' _{ref}
0.15 0.3 0.4 0.5 0.6 0.7 0.75 0.8	butyrophenone 291^* 62.4^* 23.7 ± 1.9 10.1^* 4.47^* 2.11 ± 0.07 1.49 ± 0.01 1.14 ± 0.05	201.1 f [⁶] 67.9 a ; 20.6 b ; 10.3 c ; 8.00 d [³]; 67.7 f [⁷] 31.3 a [³]; 24.7 f [⁷] 8.00 a [³]; 8.94 f [⁷] 4.59 a [³]; 6.58 o [¹³] 1.74 a [³] 2.32 o [¹³] 0.93 a [³]
$\begin{array}{c} 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.75 \\ 0.8 \end{array}$	valerophenone 178* 58.5* 20.7* 7.78±0.11 3.27±0.26 2.20±0.06 1.47±0.01	$\begin{array}{c} 193.5 i \ [^7]; \ 22.2 c; \ 14.4 d \ [^3]\\ 62.3 f \ [^7]\\ 17.3 a \ [^3]; \ 19.51 i \ [^7]\\ 8.79 a \ [^3]; \ 10.8 o \ [^{13}]\\ 2.88 a \ [^3]\\ 3.08 o \ [^{13}]\\ 1.42 a \ [^3]\end{array}$
$\begin{array}{c} 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.75 \\ 0.8 \\ 0.85 \\ 0.9 \\ 1.0 \end{array}$	$\begin{array}{c} 126.8^{*} \\ 43.2 \pm 0.9 \\ 15.8^{*} \\ 6.21 \pm 0.14 \\ 2.60 \pm 0.01 \\ 1.30 \pm 0.03 \\ 0.82 \pm 0.03 \\ 0.63 \pm 0.02 \\ 0.346^{*} \end{array}$	219.5 r [⁵] 45.4 m ; 107.8 m [¹⁰]; 64.656 r [⁵] 20.610 r [⁵] 7.460 r [⁵]; 9.43 m ; 10.6 m [¹⁰]; 1.83 p [¹⁴] 3.024 r [⁵]; 4.30 m ; 4.16 m [¹⁰]; 0.76 p [¹⁴] 2.90 m ; 2.75 m [¹⁰] 1.372 r [⁵]; 1.96 m ; 1.89 m [¹⁰]; 0.34 p [¹⁴] 1.32 m ; 1.34 m [¹⁰] 0.747 r [⁵]; 0.89 m ; 0.99 m [¹⁰]; 0.15 p [¹⁴] 0.436 r [⁵]

***** Calculated according to Formula 4. Column key: a - Hypersil ODS, b - Hypersil SAS, c - Magnusil C22, d - Spherisorb phenyl, <math>e - Bondapak ODS, $f - 5 \mu m$ Hypersil ODS, g - ODS, $h - 3 \mu m$ Hypersil ODS, $i - 5 \mu m$ Techsil ODS, $j - 5 \mu m$ Spherisorb ODS, $k - 5 \mu m$ Zorbax ODS, $l - 10 \mu m$ Partisil ODS, m - Merck RP-18, n - Fast LC-8TM (Technicon), $o - 5 \mu m$ Rainin Microsorb C8, $p - 7.5 \mu m$ Silasorb C8 and r - Whatman ODS-3.

The best set of regression coefficients was calculated using the leastsquares technique. All experimental data points were taken into account. The value of z was found minimizing the sum of a residual dispersion of $k'(S_k)$ for all the ketones under study (solutes 1-31).

From the results in Table 1 it follows that the best fit for lnk' of ketones is obtained using Formula 4, while for the other compounds Formula 1 gives a maximum fit. The k' values in reversed-phase LC depend strongly on the solid phase quality. A comparison of experimental and published data on k' shows that the retention behaviour of ketones on SEPARON SGX C18 is similar to that on Hypersil ODS column (Table 2). Agreement is good even for the data extrapolated according to Formula 4.

REFERENCES

- 1. Jandera, P., Churacek, J. Gradient elution in liquid chromatography. I. Influence of the composition of the mobile phase on the capacity ratio (retention volume, band with, and resolution) in isocratic elution. Theoretical consideration // J. Chromatogr., 1974, 91, 207-221.
- Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей. Л., 1982.
 Smith, R. M. Alkylarylketones as a retention index scale in liquid chromatography
- J. Chromatogr., 1982, 236, N 2, 313—320.
 Baker, J. K., Ma, C. Yu. Retention index scale for liquid-liquid chromatography // J. Chromatogr., 1979, 169, N 1, 107—115.

- 5. Lochmüller, C. H., Breiner, S. J., Reese, C. E., Koel, M. N. Characterization and prediction of retention behaviour in reversed-phase chromatography using factor
- 6. Smith, R. M., Hurdley, T. G., Gill, R., Moffat, A. C. The application of retention of indices using the alkyl arulkalar. A. C. The application of retention indices band on the local anaesthetic drugs by high-performance liquid chromatography // J. Chromatogr., 1986, 355, N 1, 75–78.
 7. Smith, R. M., Hurdley, T. G., Gill, R., Moffat, A. C. The application of retention of indices using the alkyl arulkalar scale to the scale sc
- Smith, R. M., Hurdley, T. G., Gill, R., Mojjat, A. C. The application of retention of indices using the alkyl-arylketone scale to the separation of the barbiturates by HPLC. I. The effect of the eluent // Chromatographia, 1984, 19, 401-406.
 Minick, D. J., Sabatka, J. J., Brent, D. A. Quantitative structure-activity relationship using hydrophobicity constants measured by high-pressure liquid chromato-graphy: a comparison with octanol-water partition coefficients // J. Liquid Chromatogr., 1987, 10, N 13, 2565-2589.
 Smith, R. M., Hurdley, T. G., Gill, R., Mojjat, A. C. The application of retention indices using the alkylaryl-ketone scale to the separation of the barbiturates by HPLC. II. The effect of the stationary phase // Chromatographia, 1984, 19, 407-410
- 407-410.
- 10. Schoenmakers, P. J., Billiet, H. A. H., De Calan, L. Influence of organic modifiers on the retention behaviour in reversed-phase liquid chromatography and its
- consequences for gradient elution // J. Chromatogr., 1979, 185, 179–195.
 Schoenmakers, P. J., Naish, P. J., Hunt, R. J. Criteria for judging the quality of separation in chromatograms containing solvent peaks // Chromatographia, 1987,
- Grant, J. R., Dolan, J. W., Snyder, L. R. Systematic approach to optimizing resolution in reversed-phase liquid chromatography with emphasis on the role of temperature // J. Chromatogr., 1979, 185, 153-177.
 Khaledi, M. G., Peuler, E., Ngeh-Ngwaibi, J. Retention behaviour of homologous
- 13. Analexi, M. O., Fener, E., Figura general general for the formation of homogous series in reversed-phase liquid chromatography using micellar, hydroorganic, and hybrid mobile phases // Anal. Chem., 1987, 59, N 23, 2738–2747.
 14. Jandrea, P. A method for characterization and optimization of reversed-phase liquid chromatographic separations based on the retention behaviour in homo-
- 15. Szabo, G., Csato, E., Offenmüller, K., Devai, M., Borbely-Kuszmann, A., Liptai, G. Preparation and retention characteristics of different phenyl phases for reversed-phase liquid chromatography // Chromatographia, 1988, 26, 255-258.

Estonian Academy of Sciences, Institute of Chemistry

Received Nov. 22, 1989

Jaak ARRO, Vello TALVES

KETOONIDE JA TEISTE ORGAANILISTE ÜHENDITE RETENTSIOONI ISEÄRASUSED KOLONNIS SEPARON SGX C18 METANOOLI **VESILAHUSEGA ELUEERIMISEL**

On määratud 39 orgaanilise ühendi, sh. 31 alifaatse ja aromaatse ketooni, mahtuvuskoefitsiendid kolonnis SEPARON SGX C18 metanooli vesilahusega elueerimisel temperatuuril $35\pm0,1$ °C. Ketoonide puhul on mahtuvuskoefitsiendi logaritm kirjeldatav teist järku ja muude ühendite puhul esimest järku lineaarsõltuvusena metanooli mahuosast (40–100%) eluendis. Trükis avaldatud andmete alusel on näidatud, et ketoonide retentsioon kasutatud kolonnis on võrreldav retentsiooniga kolonnis HYPERSIL ODS.

Яак АРРО, Велло ТАЛВЕС

ОСОБЕННОСТИ УДЕРЖИВАНИЯ КЕТОНОВ И ДРУГИХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В КОЛОНКЕ SEPARON SGX С18 ПРИ ЭЛЮИРОВАНИИ ВОДНЫМИ РАСТВОРАМИ МЕТАНОЛА

Определены коэффициенты емкости 39 органических соединений, в том числе 31 алифатического и ароматического кетона, в колонке SEPARON SGX C18 при элюировании водными растворами метанола (от 40 до 100 % об.) при температуре $35\pm0,1$ °C. Зависимость логарифма коэффициента емкости от доли метанола в элюенте хорошо описывается линейным регрессионным уравнением, для кетонов — уравнением второго порядка, для других — первого порядка. Сравнение с литературными данными показывает, что по характеру удерживания кетонов использованная колонка сходна с колонкой HYPERSIL ODS.