УДК 543.544

Юло ХАЛДНА, Ирина ЯКОВЛЕВА

ОПРЕДЕЛЕНИЕ НИЗКИХ КОНЦЕНТРАЦИЙ ФОСФАТ-ИОНОВ МЕТОДОМ ИОННОЙ ХРОМАТОГРАФИИ

(Представил Ю. Канн)

Ионная хроматография является чувствительным и экспрессным методом определения ионов в воде [1]. Определение этим методом (с использованием двухколоночной системы [1]) низких концентраций фосфат-ионов не представляет особых трудностей в том случае, когда в пробе нет относительно высоких концентраций нитрат- и сульфат-ионов. Если же концентрации последних на порядок или больше превышают концентрацию фосфат-ионов, условия эксперимента надо подобрать такими, чтобы обеспечивалось смещение пиков нитрат- и сульфат-ионов относительно далеко от пика фосфат-ионов. С использованием в разделяющей колонке ХИКС-1, самого доступного в СССР сорбента-анионита, для этого имеются две возможности. Во-первых, применение элюента, обеспечивающего появление пика фосфат-ионов между пиками нитрати сульфат-ионов. Таким элюентом может быть, например, раствор 1,0 мМ Na₂CO₃ (рис. 1, а). Во-вторых, применение элюента с относительно высоким содержанием гидроксида натрия, например 10 мМ NaOH + 1,0 мМ Na₂CO₃, элюнрующего фосфат-ионы после сульфат-ионов (рис. 1, б). Однако в ходе работы выяснилось, что сильнощелочной элюент заметно (в 2-4 раза) сокращает срок службы разделяющей колонки с ХИКС-1. Поэтому для определения низких концентраций фосфатионов мы остановились на элюенте, содержащем 1,0 мМ Na₂CO₃.

На рис. 1 показаны хроматограммы проб, где содержание фосфатионов относительно высокое по сравнению с концентрациями нитрат- и сульфат-ионов. Если концентрация фосфат-ионов значительно ниже, чем концентрации нитрат- и сульфат-ионов, то вместо хроматограмм, изображенных на рис. 1, получим хроматограммы, показанные на рис. 2.

Помимо выбора элюента, существенное влияние на определение фосфат-ионов оказывают еще четыре фактора.

1. Величина вводимой пробы. Высокое значение сигнал/шум обеспечивает большой объем пробы. Мы вводили 4,2 мл, т.е. в 10—100 раз больше, чем обычно принято. Тем не менее разделяющая колонка размерами 3×150 мм позволила получить нормальное разделение нитрат-, фосфат- и сульфат-ионов (рис. 2, а, б).

2. Качество катионита в подавляющей колонке. При заполнении ее катионитом КУ-2 на хроматограммах наблюдается заметный «хвост» у пика нитрат-иона. Это, в свою очередь, мешает точному определению высоты (площади) пика фосфат-иона. Поэтому мы заполняли подавляющую колонку катионитом Dowex WX 16 (фракция 0,3—0,8 мм), что позволило также быстро проводить ее регенерацию 10%-ной серной кислотой.

3. Температура в помещении, где ведется работа, должна быть постоянной. При ее изменении свыше ±0,3 °С/сутки на хроматограммах наблюдается заметный дрейф нулевой линии, что снижает точность определений.

4. Пульсация потока элюента, зависящая от качества подающего элюент насоса, должна быть минимальной. В противном случае при высокой чувствительности детектора на хроматограмме появляются заметные периодические колебания сигнала.

Учет вышеуказанных рекомендаций весьма существен при определении концентраций фосфат-ионов на фоне относительно больших концентраций нитрат- и сульфат-ионов. В таблице приведены результаты определений фосфат-ионов на фоне смеси 10 мг NO₃/л и 20 мг SO₄²/л с использованием соответствующих модельных растворов.

Рис. 1. Разделение смесн F- (1), Cl- (2), NO₃⁻ (3), HPO₄²⁻ (4) и SO₄²⁻ (5) с использованием в качестве элюентов 1,0 мМ Na₂CO₃ (а) и 10 мМ NaOH+1,0 мМ Na₂CO₃ (б). Условия хроматографирования: разделяющая колонка 3×150 мм, сорбент-анионит ХИКС-1; подавляющая колонка 4×250 мм, катионит Dowex WX 16 (фракция 0,3-0,8 мм); скорость подачи элюента 1,5 мл/мин; чувствительность детектора 0,1 мСм 1/400 (а) и 0,1 мСм 1/1000 (б) на выходное U=10 мВ; постоянная ячейки 7,0 см⁻¹; чувствительность самописца 2 мВ на шкалу; объем пробы 4,2 мл (а) и 0,4 мл (б).

Рис. 2. Разделение смеси F⁻ (,1), Cl⁻ (2), NO₃⁻ (3), HPO₄²⁻ (4) и SO₄²⁻ (5) с использованием в качестве элюентов 1,0 мМ Na₂CO₃ (а) и 10 мМ NaOH+1,0 мМ Na₂CO₃ (б) в условиях, когда концентрация HPO_4^{2-} -ионов значительно меньше концентраций дру-

гих нонов.

Объем пробы 4,2 мл (а) и 0,4 мл (б); чувствительность детектора 0,1 мСм 1/400 (а) и 0,1 мСм 1/20 (б) на выходное U=10 мВ. Остальные условия хроматографирования соответствуют приведенным в подписи к рис. 1.

Следует, однако, отметить, что при вышеуказанных определениях обнаружена заметная зависимость наклона калибровочного графика (мг HPO^{2-/}/л — высота пика HPO²⁻/ от степени отработанности катионита в подавляющей колонке. Поэтому можно рекомендовать вводить калибровочный раствор после каждой пробы анализируемой смеси. Результаты, приведенные в таблице, получены при соблюдении очередности ввода проб. Конечно, при этом время анализа увеличивается вдвое, однако, с другой стороны, обеспечивается точность анализа вплоть до 0,1 мг HPO²/л (см. таблицу).

Данные определения	фосфат-ионов	B	модельных растворах	
на фоне смеси	10 мг NO-/л	И	20 мг SO ² /л	

Взято, мг HPO ₄ ^{2-/л}	Найдено, мг HPO ₄ /л*
0.150	0.146±0.036
0,300	$0,298 \pm 0,072$
0,600	$0,592 \pm 0,083$
0.900	$0,874 \pm 0,008$
1,200	$1,140 \pm 0,090$

* Доверительные интервалы даны при P=0,95. Число параллельных определений n=5.

Экспериментальная часть

Элюенты, модельные и анализируемые растворы готовили из соответствующих химических реактивов квалификации ч. д. а. Использовали ионный хроматограф IVK-1 (СКБ АН Эстонии) с кондуктометрическим детектором ID-1. Хроматограф был установлен в помещении без окон, чтобы избежать больших колебаний температуры. Работы вели при температуре около 21 °C. Элюент дегазировали ежедневно, пропуская газообразный гелий (не менее 30 мин). Разделяющая колонка 3×150 мм содержала сорбент ХИКС-1 («Хийу Калур», Таллинн), подавляющая колонка 4×250 мм — катионит Dowex WX 16 (фракция 0,3—0,8 мм).

Вывод

Разработана ионохроматографическая методика определения фосфат-ионов в интервале концентраций 0,1—1,2 мг HPO₄^{2-/л} в присутствии относительно больших концентраций нитрат-ионов (10 мг NO₃^{-/л}) и сульфат-ионов (20 мг SO₄^{2-/л}). Выяснены факторы, от

которых зависит применение этой методики.

ЛИТЕРАТУРА

1. Фритц Дж., Гьерде Д., Поланд К. Ионная хроматография. М., 1984.

Институт химии Академии наук Эстонии Поступила в редакцию 26/XII 1989

Ulo HALDNA, Irina JAKOVLEVA

VÄIKESTE FOSFAATIOONI KONTSENTRATSIOONIDE IOONKROMATOGRAAFILINE MÄÄRAMINE

Esitatud 100nkromatograa (iline meetod lubab määrata fosfaatioonide väikesi kontsentratsioone $(0,1-1,2 \text{ mg } \text{HPO}_4^{2-}/\text{l})$ suhteliselt suurte nitraatioonide $(10 \text{ mg } \text{NO}_3^{-}/\text{l})$ ja sulfaatioonide $(20 \text{ mg } \text{SO}_4^{2-}/\text{l})$ kontsentratsioonide foonil. On uuritud tingimusi, millest sõltub selle meetodi rakendamine.

Ulo HALDNA and Irina JAKOVLEVA

IONCHROMATOGRAPHIC DETERMINATION OF PHOSPHATE IONS AT THEIR LOW CONCENTRATIONS

An ionchromatographic method is suggested for the determination of phosphate ions (0.1-1.2 ppm) in the presence of relatively large amounts of nitrate (10 ppm) and sulfate ions (20 ppm). Some factors exhibiting a critical influence on the applicability of the method suggested are discussed.