УДК 547.298.1.07

Я. ЙЫЕРС, Хелье УРБЕЛЬ

ИЗГОТОВЛЕНИЕ АНИОННЫХ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ НА ОСНОВЕ ЖИРОВЫХ ОТХОДОВ РЫБОКОНСЕРВ-НОЙ ПРОМЫШЛЕННОСТИ

EUCACH. CDCAC, SATEMAT B INCACCEROR COMMUNIC CONTRACTORS

(Представил О. Киррет)

Современные косметические поверхностно-активные вещества (ПАВ) изготавливают на базе растительных масел, животных жиров и белков, а также из синтетических веществ. Для производства ПАВ ежегодно расходуются большие количества ценных пищевых масел и нефтяных продуктов. Поэтому химики-органики давно ведут поиски дешевого сырья натурального происхождения взамен дорогостоящих традиционных про-

дуктов.

В данной работе дается описание разработанной нами экономически эффективной технологии производства косметических ПАВ и шампуня на их основе из принципиально нового дешевого сырья — из жировых отходов рыбоперерабатывающих предприятий [1]. Такое некондиционное сырье впервые применено в области тонкого органического синтеза. Путем его утилизации на базе стандартного оборудования налажено экологически чистое и практически безотходное производство косметических ПАВ, обладающих хорошей моющей способностью, оказывающих мягкое дерматологическое действие и легко подвергающихся биохимическому разложению. Вследствие высокой степени загрязненности сырья и содержания в нем сильноненасыщенных радикалов жирных кислот в пропись химической схемы и в технологию переработки жировых отходов введен ряд усовершенствований, улучшающих качество целевого продукта.

Конечным продуктом является новое дерматологически мягкодействующее анионное ПАВ — двойная соль триэтаноламина и натрия ациламидоэтилсульфоянтарной кислоты (препарат ДТН). На его основеразработана основная рецептура шампуня для мытья волос.

Следует отметить, что препарат ДТН пригоден также для изготовления пеномоющих средств для ванн и стабилизаторов косметических средств, а также для составления композиций для чистки ковров и стирки

шерстяных изделий.

Препарат ДТН, способ получения и синтез промежуточных продуктов защищены 5 авторскими свидетельствами СССР и патентуется в 7 капиталистических странах (в настоящее время опубликовано три патента).

Настоящая технология включает пять стадий:

1. Сепарация жиров от воды и эмульгированных примесей проводится при температуре 90—95°С. Жировой слой отделяется на сепара-

торе [2] и высушивается.

2. Синтез метиловых эфиров жирных кислот [3]. Полученная жировая смесь состоит из глицеридов и свободных жирных кислот, последние образуются в результате биогидролиза. Содержание ненасыщенных и сильноненасыщенных гомологов в жировых отходах превышает 80%.

Таким образом, необходима этерификация свободных жирных кислот и переэтерификация глицеридов без разрушения двойных связей в смеси насыщенных и ненасыщенных метиловых эфиров жирных кислот. При этом оказалось целесообразным проводить этерификацию свободных жирных кислот и переэтерификацию глицеридов раздельно, сначала в кислой среде, затем — в щелочной.

Этерификация свободных жирных кислот проводится в избытке метанола, подкисленного серной кислотой:

$$R$$
— $COOH+CH_3OH \xrightarrow{H_2SO_4} R$ — $COOCH_3+H_2O$,

где R — линейный углеводородный радикал C_{13} — C_{21} .

При этом необходимо удаление образующейся реакционной воды, чтобы избежать в стадии щелочной переэтерификации глицеридов омыления под действием едкого натра. Наличие мыла препятствует расслаиванию системы, и выход эфиров уменьшается. Однако удаление воды традиционными способами из-за высокой реакционной способности двойных связей в сильноподкисленной среде приводит к побочным реакциям и полимеризации. Для получения качественного продукта реакционная вода и кислотный катализатор удаляются экстракцией сухим метанолом. Выход продукта 97—98% от теоретического.

Переэтерификация глицеридов жировых отходов протекает путем нагревания полученной эфирно-жировой смеси со щелочным метанолом:

$$\begin{array}{cccc} \text{CH}_2\text{--OOC--R} & \text{NaOH} & \text{CH}_2\text{--OH} \\ \text{CH--OOC--R} + 3\text{CH}_3\text{OH} & \xrightarrow{65\,^{\circ}\text{C}} & 3\text{R--COOCH}_3 & + \text{CH}_2\text{--OH} \\ \text{CH}_2\text{--OOH} & & \text{CH}_2\text{--OH} \end{array}$$

После отстаивания слой эфиров отделяется, промывается, высушивается и ректифицируется в интервале температур кипения 140—207 °C при остаточном давлении 15 мм рт. ст. Отработанный метанол нейтрализуется и направляется на регенерацию.

Выход эфиров при переэтерификации достигает 95—98% от теоретического. Средний технологический выход сырых эфиров по двум стадиям составляет 89% от веса исходных жировых отходов.

При ректификации эфиров отбираются предварительная фракция (1—3%) и две целевых — первая (20—25%) и вторая (65—75%).

3. Синтез этаноламидов жирных кислот [4]. Реакция амидирования этаноламинами обычно катализируется алкоголятами спиртов или металлическим натрием. Новизна данной технологии заключается в применении 2-аминоэтоксилата натрия (ЭА-катализатора), обеспечившего повышение технологичности процесса. Этот катализатор получается нагреванием моноэтаноламина и едкого натра с удалением образующейся воды из реакционной смеси.

Метиловые эфиры жирных кислот содержат примеси, неизвлекаемые ректификацией и вызывающие потемнение продукта при амидировании. Для осветления препаратов эфиры предварительно рафинируются моноэтаноламином.

Моноэтаноламиды жирных кислот (МЭ-амиды) получаются путем амидирования второй фракции очищенных метиловых эфиров жирных кислот в 0,5-молярном избытке моноэтаноламина в присутствии ЭА-катализатора:

$$R$$
— $COOCH_3 + NH_2$ — CH_2 — CH_2 — OH $\xrightarrow{9A$ -катализатор R — $CO-NH$ — $70-80\,^{\circ}C$ — CH_2 — CH_2 — OH + CH_3 OH.

Избыток моноэтаноламина удаляется в роторно-пленочном дистилляторе, который обогревается паром. Процесс осуществляется в вакууме при 20—25 мм рт. ст. и температуре 125—130 °С. Конденсат паров моноэтаноламина направляется на регенерацию. Степень его превращения

составляет 94-98% от теоретического.

Синтез диэтаноламидов жирных кислот (ДЭ-амиды) ведется аналогично синтезу МЭ-амидов. ДЭ-амиды получаются путем амидирования первой фракции очищенных метиловых эфиров жирных кислот в 0,5-молярном избытке диэтаноламина. В данном случае избыток диэтаноламина не удаляется. Степень превращения диэтаноламина составляет 93—97% от теоретического. ДЭ-амиды используются в композициях шампуня в качестве загустителей и стабилизаторов пены.

4. Синтез ациламидоэтилмалеината (малеината). МЭ-амид при нагревании до 60—70°С обрабатывается малеиновым ангидридом, который дозируется в эквимолярном количестве (по гидроксильному числу МЭ-амида):

Степень превращения малеинового ангидрида практически равна теоретической. Однако из-за наличия примесей в МЭ-амиде действительный выход малеината несколько снижается. Поэтому более целесообразным оказывается вычисление его суммарного выхода по трем стадиям процесса: синтезам МЭ-амида, малеината и конечного продукта ДТН, который составляет приблизительно 80% от теоретического.

При синтезе малеината возможно протекание нескольких побочных реакций — образуются малеинамидоэтанолы и малеинамидоэтилма-

леинаты.

5. Синтез анионного ПАВ — препарата ДТН [4] — проводится сульфированием малеината в водном растворе триэтаноламина и сульфита натрия, где одновременно происходит нейтрализация кислотного малеината.

Синтез двойной соли триэтаноламина и сульфита натрия (Na/TЭАсульфита) осуществляется путем последовательного растворения в воде пиросульфита натрия и технического триэтаноламина.

Для получения препарата ДТН малеинат дозируется в водный раст-

вор Na/ТЭА-сульфита:

O
R—C—NH—
$$C_2H_4$$
—OCO—CH=CH—COOH+NaSO-3NH(C_2H_4OH)3—>
60—80°C
O
——R—C—NH— C_2H_4 —OOC—CH—CH2—COO-NH = (C_2H_4OH)3

Водный раствор препарата ДТН содержит приблизительно 29-31% активного вещества. Суммарный средний выход по трем стадиям составляет 80% от теоретического.

Наиболее существенной побочной реакцией является сульфирование малеинамидоэтилмалеината, который в качестве примеси содержится в малеинате.

Изготовление шампуня «MEREVAHT» [4]. На основе ДТН и ДЭ-амидов жирных кислот разработана новая рецептура шампуня для мытья волос, выпускаемого под торговым названием «MEREVAHT». Его состав, % мас.:

двойная соль триэтаноламина и натрия ациламидоэтилсульфоянтарной кислоты $12,0\pm1,0$ диэтаноламиды жирных кислот 3,0 натрий хлористый 2,5-3,5 этиловый спирт 1,5 отдушка до 1,5 вода питьевая 2,5-3,5 до 100,0 2,5-3,5 до 100,0

По своим физико-химическим свойствам новый шампунь соответствует мировым стандартам. Он оказывает мягкое воздействие на волосы и кожу головы, хорошо моет в холодной и жесткой воде и препятствует образованию перхоти. Пенообразующая способность и пеноустойчивость по Росс-Майлсу в жесткой воде при концентрации активного вещества 0.3% и температуре $40\,^{\circ}$ С составляют $H_0 = 180 - 200$ мм и $H_5/H_1 = 0.95 - 0.97$ соответственно.

Главным достоинством данной технологии является применение дешевого сырья. По материальному балансу, из 1 т жировых отходов получается 9 т шампуня «MEREVAHT». Из опыта действующего производства выяснилось, что необходимые капитальные затраты на строительство и сооружение опытно-промышленной установки окупаются за полтора года. Освоена проектная мощность 1000 т шампуня в год.

По нашей технологии достигаются высокие выходы целевых продуктов. Так как побочные соединения образуются в минимальных количествах и являются безвредными, отпадает необходимость их отделения от целевых продуктов. Таким образом, последние направляются на следую-

щую стадию обработки без очистки.

Технология экологически безвредна, вспомогательное химическое сырье практически полностью регенерируется (метанол, моноэтаноламин). Основные отходы: кубовые остатки ректификации метиловых эфиров — 1,86%, глицерин — 0,86%, неорганические и моноэтаноламиновые соли — 0,12%. При этом кубовые остатки сжигаются в энергосистеме с жидким топливом. Глицерин и соли в виде нейтральных разбавленных растворов подвергаются биоочистке. При более крупнотоннажном производстве становится целесообразной и регенерация глицерина.

Необходимо отметить, что метиловые эфиры жирных кислот жировых отходов рыбоперерабатывающих предприятий являются ценным сырьем для изготовления любого типа ПАВ, в том числе и амфолитных, на основе которых можно будет создавать самые современные и разнообразные

шампуни.

ЛИТЕРАТУРА

2. Ваакс С. А., Ургас Э. Э., Ууккиви А. А. Устройство для улавливания жира из сточных вол // А. с. 1116017 (СССР). Опубл. в Б. И. 1984. № 36. 65

Jõers, J., Urbel, H. The process for preparing anionic surfactants on the basis of fatty wastes of the fish-processing industry // Proc. 2nd World Surfactant Congr., I. Paris, 1988, 190—196.

ных вод // А. с. 1116017 (СССР). Опубл. в Б. И., 1984, № 36, 65. 3. Имерс Я. Х., Урбель Х. П., Ууккиви А. А. Способ получения метиловых эфиров ненасыщенных жирных кислот C_{14} — C_{22} // А. с. № 1191446 (СССР). Опубл. в Б. И., 1985, № 42, 97.

4. Jyers, J. Kh., Uukkivi, A. A., Poom, A. J., Kuul, O. P., Urbel, Kh. P., Asi, A., Pyarn, A. V. Amine (or Ammonium) and Alkali Metal Double Salts of Acylamidoalkylene (or Acyl-amido-N-hydroxy-alkyl-N-alkylene) Sulphosuccinic Acid, Method for Preparing Same, and Compositions Containing Same // UK Patent GB 215 2029 B, 1987.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 26/I 1989

J. JOERS, Helje URBEL

ANIOONSETE PINDAKTIIVSETE AINETE SAAMINE KALATÖÖSTUSE HEITRASVADEST

Kalatööstuse heitrasvade utiliseerimisel on välja töötatud kosmeetiliste pindaktiivsete ainete ja šampooni valmistamise tehnoloogia. Uute pindaktiivsete ainete — atsüülamidoetüülsulfomerivaikhappe trietanoolamiini ja naatriumi kaksiksoolade valmistamise tehnoloogia on ressursse säästev, ökoloogiliselt kahjutu ja praktiliselt jäätmevaba.

J. JOERS, Helje URBEL

THE PROCESS OF PREPARING ANIONIC SURFACTANTS ON THE BASIS OF FATTY WASTES OF THE FISH-PROCESSING INDUSTRY

The technology of surfactants for cosmetic industry and preparing shampoo on its basis has been worked out utilizing fatty wastes of the fish-processing industry. The technology of preparing novel surfactants — triethanolamine and sodium double salts of acylamidoethylene sulphosuccinic acid — is resource-saving, ecologically harmless and practically without remnants.