Изв. АН Эстонии. Хим., 1989, 38, № 3, 185-189

https://doi.org/10.3176/chem.1989.3.07

УДК 541.123

Хелле КИРСС, И. ВИНК

РАВНОВЕСИЕ ЖИДКОСТЬ-ПАР В БИНАРНЫХ СИСТЕМАХ 1-ЭТИЛЦИКЛОПЕНТЕН-*н*-гептан, -толуол, -диметилсульфоксид

(Представил Ю. Канн)

Настоящая работа является продолжением предпринятого нами изучения термодинамических свойств систем, содержащих алкилциклены [¹].

Здесь приведены результаты экспериментального исследования изобарического равновесия между жидкостью и паром в системах *н*-гептан—1-этилциклопентен, 1-этилциклопентен—толуол и 1-этилциклопентен—диметилсульфоксид. Полученные равновесные данные скоррелированы широко распространенными уравнениями Редлиха—Кистера и Вильсона.

Использованный в экспериментах 1-этилциклопентен получали дегидратацией 1-этилциклопентанола [²] с последующей двухкратной перегонкой на высокоэффективной роторной ректификационной колонке [³]. Его хранили в запаянных ампулах в атмосфере аргона. Диметилсульфоксид также очищали многократной ректификацией. *н*-Гептан и толуол квалификации «хч» (для хроматографии) применяли без дополнительной очистки.

Чистота веществ проверена методом капиллярной газовой хроматографии на приборе «Хром-5». Для анализа н-гептана и толуола применяли 50-метровые колонки со скваланом, а для 1-этилциклопентена и диметилсульфоксида с полиэтиленгликолем 20 М. Содержание основного компонента в толуоле и диметилсульфоксиде составляло не менее 99,9% мас., в н-гептане — 99,8% мас., в 1-этилциклопентене — 99,7% мас.

Температуры кипения чистых веществ и смесей заданного состава определены эбуллиометрическим методом [4]. Установлена концентрационная зависимость температур кипения бинарных смесей 1-этилциклопентена с *н*-гептаном и толуолом в интервале давлений 200—760 мм рт. ст. и с диметилсульфоксидом в интервале давлений 100—200 мм рт. ст. (табл. 1).

Для аппроксимации зависимости температуры кипения (*T*, K) чистых веществ от давления (*P*, мм рт. ст.) использовано уравнение Антуана

$$T = \frac{B}{A - \ln P} - C, \tag{1}$$

значения констант которого (А, В, С) определены методом наименьших квадратов (табл. 2).

Математическая обработка данных о зависимости коэффициентов активности компонентов (уі) от состава раствора осуществлена для всех исследованных систем с помощью трехпараметрического уравнения Редлиха—Кистера [⁵]

$$\ln \gamma_1 = (1 - x_1)^2 [b - c(1 - 4x_1) + d(12x_1^2 - 8x_1 + 1)],$$

$$\ln \gamma_2 = x_1^2 [b + c(4x_1 - 3) + d(12x_1^2 - 16x_1 + 5)],$$
(2)

параметры которого (табл. 3) определены методом наименьших квадратов.

Углеводородные системы описаны также с помощью уравнения Вильсона [⁶]

$$\ln \gamma_{1} = -\ln (x_{1} + x_{2}\Lambda_{12}) + x_{2} \left[\frac{\Lambda_{12}}{x_{1} + x_{2}\Lambda_{12}} - \frac{\Lambda_{21}}{x_{2} + x_{1}\Lambda_{21}} \right],$$

$$\ln \gamma_{2} = -\ln (x_{2} + x_{1}\Lambda_{21}) - x_{1} \left[\frac{\Lambda_{12}}{x_{1} + x_{2}\Lambda_{12}} - \frac{\Lambda_{21}}{x_{2} + x_{1}\Lambda_{21}} \right],$$
(3)

где

$$\Lambda_{ij} = \frac{V_j}{V_i} \exp\left(-\frac{\lambda_{ij} - \lambda_{ii}}{RT}\right),$$

 $\lambda_{ij} - \lambda_{ii}$ — энергетические параметры уравнения (3), Λ_{ij} — приведенные значения параметров, V_i — мольный объем *i*-го компонента.

Таблица 1

Зависимость температур кипения (1, К) от состава раствора (x ₁) в бинарных системах при давлении P							
anno pre	Р, мм рт. ст.						
<i>х</i> ₁ , мол. доля	100	150	200	400	600	760	
1993734	in the second	н-Гептан (l)—1-этилцин	клопентен (2)	(1946) - Sec.	- and the second	
0,000			339,01	358,61	371,34	379,34	
0,092 0,098 0,104					370,45	378,35	
0,109 0,299 0,478 0,501			338,10 336,45 335,07 334,86	356,00 354,50 354,29	368,73 367,20 366,95	376,65 375,05 374,82	
0,567 0,698 0,894 0,896			334,56 333,64 —	353,99 353,01	365,62 364,31	374,57 373,50 372,12	
0,890 0,897 0,898			332,43	351,74		Ξ	
1,000			331,93	351,19	363,74	371,55	
		1-Этилци	клопентен (1) — толуол (2)			
$\begin{array}{c} 0,000\\ 0,155\\ 0,309\\ 0,503\\ 0,683\\ 0,850\\ 0,897\\ 1,000 \end{array}$			342,78 341,52 340,61 339,71 339,27 339,01 339,03 339,01	$\begin{array}{r} 362,69\\ 361,41\\ 360,42\\ 359,46\\ 358,97\\ 358,67\\ 358,67\\ 358,67\\ 358,61\\ \end{array}$	375,62 374,33 373,31 372,32 371,78 371,45 371,45 371,34	383,69 382,34 381,34 380,31 379,75 379,41 379,41 379,34	
	1-3	Этилциклопент	тен (1)-диме	етилсульфокси	ид (2)		
$\begin{array}{c} 0,000\\ 0,107\\ 0,115\\ 0,143\\ 0,301\\ 0,509\\ 0,680\\ 0,877\\ 1,000 \end{array}$	398,29 321,82 321,90 321,81 321,76 321,72 321,72 321,73 321,83	$\begin{array}{r} 409,65\\ 333,33\\ 332,06\\ 331,57\\ 331,48\\ 331,50\\ 331,46\\ 331,51\\ 331,59\\ \end{array}$	418,39 342,88 341,81 339,06 338,92 338,97 338,91 338,95 339,01				

Энергетические параметры уравнения Вильсона рассчитаны для указанных в табл. 4 температур по экспериментальным *T* — *x* даниым по методике [⁷].

Точность описания равновесных данных с помощью использованных уравнений характеризует величина среднеквадратичной погрешности (табл. 2, 5).

$$S = \sqrt{\frac{\sum_{n=1}^{N} (P_{\operatorname{prcn}} - P_{\operatorname{pacy}})^2}{N-m}},$$

где N — число экспериментальных точек, m — число параметров корреляционного уравнения (m=1 принято для уравнения (1)).

Таблица 2

Константы уравнения Антуана и ошибка аппроксимации

Вещество	<i>Р,</i> мм рт. ст.	А	B	C	S
1-Этилцикло- пентен <i>н</i> -Гептан	100-760 200-760	15,8866 16,0771	2960,032 3021,135	-59,445 -51,643	0,27 0,02
Толуол Диметилсульф-	200-760	16,1723	3178,437 2132 747		0,13

Таблица 3

Константы уравнения Редлиха-Кистера

Бинарная система	<i>Р</i> , мм рт. ст.	в	С	d
и-Гептан (1)—1-этилцикло-	200	0,0460	0,0196	0,0194
пентен (2)	400	0,0385	0,0199	-0,0186
	600	0,0325	0,0143	0,0024
	760	0.0318	0.0041	0.0221
1-Этилциклопентен (1)-то-	200	0.1615	0.0031	-0.0116
луод (2)	400	0.1410	0.0022	-0.0243
	600	0.1312	0.0043	-0.0162
	760	0 1268	0.0042	-0.0074
1-Этилииклопентен (1)-ли-	100	2 6301	0.1377	0.7799
метилсульфоксил (2)	150	2,6000	0 1484	0,6781
mernacyanoponend (2)	200	2,5666	0,1762	0,5293

Таблица 4

Энергетические параметры уравнения Вильсона

1 - Marshall	P.	Δλ _{ij} =λ кДж/и	$\Delta \lambda_{ij} = \lambda_{ij} - \lambda_{ii},$ кДж/моль		
бинарная система	мм рт. ст.	$\Delta\lambda_{12}$ $\Delta\lambda_{21}$		<i>I</i> , K	
и-Гептан (1)—1-этилцикло- нентен (2)	200 400 600 760	-1,688 -1,854 -1,824 -1,240	2,149 2,342 2,246 1,420	335,12 354,56 367,22 375,11	
1-Этилциклопентен (1)—то- луол (2)	$200 \\ 400 \\ 600 \\ 760$	-0,263 -0,175 -0,322 -0.378	0,731 0,591 0,728 0,786	340,12 359,86 372,70 380,70	

Таблица 5

The second s	A CONTRACTOR	S	
Бинарная система	<i>Р,</i> мм рт. ст.	I	П
н-Гептан (1)—1-этиликлопентен (2)	200	0,4	0,4
(1) i cirian (1) i crimiquinicircur (1)	400	0,8	0,8
	600	1,3	1,2
	760	2,0	2,0
1-Этилциклопентен (1) — толуол (2)	200	0,4	0,2
	400	0,3	0,4
	600	0,4	0,5
	760	0,6	0,6
1-Этилциклопентен (1)-диметил-	100	1.7	
сульфоксид (2)	150	2.7	
and the second se	200	5,4	

Оценка точности корреляции по уравнениям Редлиха—Кистера (1) и Вильсона (11)

Уравнения Редлиха—Кистера и Вильсона практически с одинаковой точностью описывают парожидкостное равновесие в системах *н*-гептан— 1-этилциклопентен и 1-этилциклопентен—толуол (табл. 5). В бинарной системе 1-этилциклопентен—диметилсульфоксид, в которой равновесие описано только уравнением Редлиха—Кистера, наблюдается бо́льшее расхождение между расчетом и экспериментом.

Точность корреляции повышается при понижении давления. Указанной закономерности не подчиняются только результаты расчета по уравнению (2) в системе с толуолом при 200 мм рт. ст. (табл. 5).

В описании концентрационной зависимости коэффициентов активности компонентов с помощью обоих уравнений наблюдается некоторое различие, в системе с *н*-гептаном при 200 и 400 мм рт. ст. не только количественное, но и качественное (рисунок). Здесь расчет по уравнению Редлиха—Кистера выявляет экстремальные точки на кривых $\gamma_i = f(x_i)$, тогда как расчет по уравнению Вильсона не дает экстремальных точек.

Концентрационная зависимость коэффициентов активности компонентов в системе н-гептан(1)—1-этилциклопентен(2), рассчитанная по уравнениям Редлиха—Кистера (О) и Вильсона (●) при давлениях 200 (А), 400 (Б), 600 (В) и 760 мм рт. ст. (Г).

Все исследованные в настоящей работе бинарные системы характеризуются положительным отклонением от законов идеальных растворов, наибольшим в системе 1-этилциклопентен-диметилсульфоксид. В условиях опыта жидкая фаза в этой системе расслаивается. Гетероазеотроп названной системы характеризуется следующими параметрами:

Р, мм рт. ст.	100	150	200
<i>T</i> , K	321,7	331,5	338,9
х1, мол. доли	0,986	0,980	0,975

ЛИТЕРАТУРА

- 1. Кирсс Х., Винк И. Равновесие жидкость-пар в бинарных системах 1-бутилциклопентен-н-нонан, -1-бутанол, -изопропилбензол // Изв. АН ЭССР. Хим., 1988, 37, № 2, 118-121.
- Винк И. О синтезе 1-алкилциклопентенов // Изв. АН ЭССР. Хим., 1988, 37, № 1, 2. 44-46.
- Михкельсон В., Кыбу А., Эйзен О. Исследование работы колонки с щеточным рото-ром // Изв. АН ЭССР. Хнм., 1980, 29, № 2, 109—112. 3.
- Mihkelson, V., Kirss, H., Kudrjavzeva, L., Eisen, O. Vapor-liquid equilibrium T-x measurements by a new semi-micro method // Fluid Phase Equil., 1977/1978, 4. 201 - 209
- Redlich, O., Kister, A. K. Algebraic representation of thermodynamic properties and the classification of solutions // Ind. Eng. Chem., 1948, 40, N 2, 345—348.
 Wilson, G. M. Vapor-liquid equilibrium. A new expression for the excess free energy of mixing // J. Amer. Chem. Soc., 1964, 86, N 2, 127—130.
 Сиймер Э. Х., Гринчак М. Б., Кирсс Х. Х., Куус М. Э., Кудорявцева Л. С. Определе-то порточите правнения. Вин сона на развистие изместь пар бинарных 5.
- 6.
- 7. ние параметров уравнения Вильсона по равновесию жидкость—пар бинарных систем // Деп. в ЭстНИИНТИ, 8. 09. 87, № 13-Эс.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 7/III 1989

Helle KIRSS. I. VINK

VEDELIKU JA AURU TASAKAAL BINAARSETES SÜSTEEMIDES 1-ETÜÜLTSÜKLOPENTEEN-n-HEPTAAN, -TOLUEEN, -DIMETÜÜLSULFOKSIID

Ebulliomeetrilisel meetodil on määratud keemistemperatuuri sõltuvus lahuse kontsentratsioonist süsteemides *n*-heptaan—1-etüültsüklopenteen ja 1-etüültsüklopenteen—tolueen rõhkudel 200, 400, 600 ja 760 mm Hg ning süsteemis 1-etüültsüklopenteen—dimetüülsulfoksiid rõhkudel 100, 150 ja 200 mm Hg. Kõikide uuritud süsteemide vedelik—aur tasakaalu andmeid on korreleeritud Redlichi-Kisteri võrrandiga, süsivesiniksüsteemide korral ka Wilsoni võrrandiga. Uuritud süsteeme iseloomustab positiivne kõrvalekalle ideaalsete lahuste käitumisest. Katse tingimustes on süsteemi 1-etüültsüklopenteen-dimetüül-sulfoksiid vedel faas kihistuv. On uuritud heteroaseotroobi parameetrite sõltuvust rõhust.

Helle KIRSS, I. VINK

VAPOR-LIQUID EQUILIBRIUM IN THE BINARY SYSTEMS OF **1-ETHYLCYCLOPENTENE WITH** *n***-HEPTANE, TOLUENE AND** DIMETHYLSULPHOXIDE

The boiling temperatures have been measured as a function of liquid composition The boining temperatures have been measured as a function of liquid composition using an ebulliometric method for the binary systems *n*-heptane—1-ethylcyclopentene and 1-ethylcyclopentene—toluene at pressures 200, 400, 600 and 760 mm Hg, but for the binary system 1-ethylcyclopentene—dimethylsulphoxide at 100, 150 and 200 mm Hg. The T-x data for the two binary hydrocarbon systems have been correlated using the Red-lich-Kister and Wilson equations. For the binary system 1-ethylcyclopentene—dimethyl-sulphoxide only the Red.ch-Kister equation was used. All the binary systems show a positive deviation from ideal behaviour. The liquid phase of the system 1-ethylcyclopen-tene—dimethylsulphoxide has an immiscibility gap. For the latter system the pressure dependence of heteroazeotropic parameters has been presented.