УДК 543.54:547.322

А. ЭРМ, Эльви МУКС, Ильме ЛЫЙВЕКЕ, Маре ХЕЙНВЯЛИ

КАПИЛЛЯРНАЯ ГАЗОВАЯ ХРОМАТОГРАФИЯ МЕТИЛЗАМЕ-ЩЕННЫХ 6-ХЛОР-6-МЕТИЛ-2(*E*)-ГЕПТЕНОВ

(Представил К. Лээтс)

Газохроматографические свойства изоалканов и изоалкенов изучены несравненно лучше [¹⁻⁶], чем их хлорпроизводных [⁷].

В настоящей статье приводятся данные газохроматографического исследования (индексы удерживания *I*, их температурные и структурные инкременты) 18 метилзамещенных 6-хлор-6-метил-2(*E*)-гептенов на неполярной силиконовой фазе OV-101 и на высокополярной фазе 1,2,3-*трис*-(2-цианэтокси) пропана (TCEP), нанесенных на стеклянные капиллярные колонки.

Изученные вещества представляли собой аддукты метилзамещенных хлоридов аллильного типа и изоолефинов [^{8, 9}]:

где R=H или CH₃, индекс радикала R указывает на положение заместителя в молекуле аддукта.

Эти соединения обозначены в тексте и таблицах цифрой, которая указывает, к которому из углеродных атомов 6-хлор-6-метил-2(E)-гептена присоединены метильные группы. Так, например, соединение (0) (т.е. все R=H) отвечает 6-хлор-6-метил-2(E)-гептену, а соединение (2355') — 6-хлор-2,3,5,5,' 6-пентаметил-2-гептену. Буквы α и β указывают на диастереоизомеры, a, b, c — на изомерные продукты реакции, один из которых содержит показанную на схеме структуру.

Структуры основных изученных продуктов с чистотой 85—95% доказаны методами ЯМР ¹Н и ¹³С [^{9, 10}], за исключением пробы (455'), которая представляла собой трудноразделимую смесь изомерных соединений, и обнаружение пика регулярного аддукта на основе интерпретации полученных ГЖХ данных было одной из целей настоящего исследования. Пробы (45) и (245) представляли собой смесь диастереоизомеров. Для ускорения определений анализировали смесь подходящих по временам удерживания соединений.

Экспериментальная часть

Условия газохроматографического анализа на приборе «Хром-5» с детектором по ионизации в пламени:

стеклянная колонка:		
длина, м	50	25
диаметр, мм	0,25	0,25
жидкая фаза	OV-101	TCEP
эффективность по тетрадекану		
при 120 °C, ТТ	91000	28600
давление газа-носителя (Не)		
на входе в колонку, МРа	0,15	0,10
скорость газа-носителя, см ³ /мин	1,5	1,5
температура колонки, °С	$80 - 120(\pm 0, 2)$	$60 - 110(\pm 0, 2)$
	the second se	

Характеристики колонок в течение проведения опытов (2 месяца) не менялись. Мертвый объем колонок и индексы удерживания рассчитывали известным методом [¹¹] по временам удерживания *н*-алканов. Стандартное отклонение, определенное по не менее чем четырем измерениям при каждой температуре, составляло $\pm 0,5$ единицы индекса удерживания (ед. ин.).

Результаты и их обсуждение

Сущность структурных инкрементов (табл. 1, 2) раскрыта в [12, 13], за исключением величины

$$\Delta I_{(\mathrm{CH}_3)^l} = I_{(ij)} - I_{(j)},\tag{1}$$

где *i* — положение метильной группы, введенной в молекулу; (*ij*) и (*j*) — соединения с разным числом метильных заместителей. (Все *I* и их структурные инкременты, в том числе взятые и из литературы, рассчитаны и перерассчитаны для 80°С.)

Величина $\Delta I_{(CH_3)^l}$ характеризует, с одной стороны, эффект увеличения I с введением метильной группы в изучаемую молекулу (вклад метильной группы в I), с другой — взаимное влияние метильных (и функциональных) групп. Величина $I_{(CH_3)^l}$, на наш взгляд, должна быть меньше 100 ед. ин. (в случае одного метильного заместителя), так как с разветвлением молекулы ее сорбционные свойства снижаются (в том числе и температура кипения), а следовательно, и уменьшается I. Отклонения (табл. 2) — результат взаимодействия метильных (и функциональных) групп. Разность 100 — $\Delta I_{(CH_3)^l}$ характеризует степень разветвления молекулы, что позволяет сделать некоторые выводы о взаимосвязи I и стерических эффектов, влияющих на сорбционные свойства веществ.

Значения І при 80°С и коэффициенты a, b, a', b', c' корреляционных уравнений

$$I = a + b/T \tag{2}$$

И

$$I = a' + b'/(c' + T)$$
(3)

рассчитывали методом наименьших квадратов на ЭВМ ЕС 1022 (табл. 1). По уравнению (2) вычисляли коэффициенты на неполярной OV-101 фазе, по уравнению (3) — на полярной TCEP фазе [¹²]. Разность между экспериментальной и вычисленной величинами *I* не превышает 0,5 ед. ин. для колонки с OV-101 и 1,0 ед. ин. для колонки с TCEP, за исключением пробы (455'а), где ошибка превышает 2 ед. ин., по-видимому, из-за бо́льшего температурного инкремента 10 ($\delta I/dT$) по сравнению с остальными.

Величина температурного инкремента 10 ($\delta I/dT$) (изменение значения *I* при изменении температуры колонки на 10 °C) варьируется на колонке с OV-101 от 1,9 ед. ин. (соединение (2)) до 5,8 ед. ин. (соединение (2355')) и увеличивается приблизительно на 1 ед. ин. при введении в молекулу одной метильной группы.

Tabauya 1

Газохроматографические характеристики метилзамещенных 6-хлор-6-метил-2(E)-гептенов при 80°С и

	AI TCEP-OV-10		174,0 174,0 152,0 153,0 175,3 175,3 175,3 175,3 175,3 186,1 141,5 153,8 167,1 153,6 167,1 153,6 166,8 169,3 169,3 169,3 169,3
коэффициенты уравнений (2) и (3) температурных зависимостеи /	Hov-101		86,6 139,7 139,7 148,1 118,1 126,7 1131,2 131,2 131,2 131,2 131,2 133,5 133,2 133,5 133,2 133,5 133,2 133,5 133,2 133,2 133,7 133,2 133,7
	TCEP, температурный интервал 60—100 °С	c'	$\begin{array}{c} -637,9\\ -713,9\\ -738,6,2\\ -538,6,2\\ -538,6,4\\ -538,6,4\\ -538,1\\ -647,4\\ -732,1\\ -647,4\\ -732,1\\ -640,7\\ -535,1\\ -535,1\\ -606,8\\ -535,1\\ -606,8\\ -535,1\\ -606,8\\ -1119,2\\ -609,6\\ -1119,2\\ \end{array}$
		p'	$\begin{array}{c} -113210\\ -183150\\ -184630\\ -81617\\ -131460\\ -131460\\ -129300\\ -129300\\ -2280830\\ -129300\\ -22331\\ -233510\\ -23331\\ -233321\\ -233321\\ -233321\\ -233321\\ -23331\\ -23331\\ -23331\\ -23331\\ -23331\\ -23331\\ -23331\\ -23331\\ -23331\\ -23331\\ -23331\\ -233321\\ -23331\\ -233321\\ -23331\\ -2333221\\ -233321\\ -2333221\\ -2333222\\ -23332222\\ -23332222\\ -2333222\\ -2333222\\ -2333222\\ -2333222\\ -2333222\\ -2333222\\ -2333222\\ -2333222\\ -233322\\ -2333222\\ -2333222\\ -2333222\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233322\\ -233$
		a'	762.9 762.9 506.3 5106.3 845.5 862.4 662.6 662.6 662.6 662.6 662.6 662.6 662.6 693.2 1036.9 949.4 1036.9 949.4 1035.9 1045.9 1045.9 1045.9 1045.9 1045.9 27,8 27,8 27,8 27,8 27,8 27,8 27,8 27,8
		I	1160,6 1230,1 1230,1 1200,3 1292,3 1301,9 1306,5 1306,5 1306,5 1306,5 1306,5 1306,5 1376,6 1376,5 1376,6 1376,8 140,8 140,
	ОV-101, температурный интервал 80-120 °C	10 (<i>ðI/dT</i>) ед. ин./10 °С	v, – v, w, w, w, w, w, w, w, 4, 4, 4, v, v, v, – – – 0, 0, 2, 4, 6, – , 0, 0, – – – 0, 0, 0, – – – 0, 0, 0, – – – 0, 0, 0, – – – 0, 0, 0, – – – 0, 0, 0,
		p	-28300 -23738 -23738 -31637 -31637 -35075 -35075 -35075 -41894 -35075 -41894 -410057 -44940 -52520 -52520 -65699 -73617
		a	1066,7 1106,9 1137,8 1137,8 1227,6 1228,8 1228,8 1228,8 1228,8 1235,1 1229,5 1235,5 1352,3 1355,8 1356,8 1356,8 1356,8 1356,8 1356,8 1356,8 1356,8 1356,8 1356,8 1356,8 1356,5 1355,5 1525,5 15
		I	986,6 1039,6 1048,3 1048,3 11094,3 1118,1 11129,5 11129,5 11129,5 11151,3 1151,5 1151,
	Номер соедине- ния (он соот- вегствует поло- жению метиль- ого заместителя в молекуле)		$(4) \\ (4) \\ (2) \\ (24) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (255) \\ (255) \\ (255) \\ (255) \\ (255) \\ * \\ (2355) \\ * \\ ($

* Температурный интервал в случае ТСЕР составляет 70-110°С.

На колонке с TCEP рассчитанные для интервала от 80 до 90 °C значения 10 ($\delta I/dT$) сорбатов увеличиваются от 12,1 ед. ин. (соединение (24)) до 19,2 ед. ин. (соединение (2355')).

Из табл. 1 видно, что величины температурных инкрементов $10(\delta I/dT)$ соединений (455'a) и (455'c) заметно отличаются от соответствующих величин остальных замещенных тремя метилами 6-хлор-6-метил-2-гептенов, следовательно, с большой вероятностью [¹³] соединению (455'b) можно приписать структуру, соответствующую приведенной на схеме. (Газохроматографические свойства соединений (455'a) и (455'c) далее не обсуждаются.)

Структурный инкремент H^{OV-101} (гомоморфный фактор) (табл. 1) в данной работе отражает также влияние взаимного положения метильных (и функциональных) групп на свободную энергию растворения вещества в жидкой фазе. Самые низкие значения H наблюдаются для 4-метилзамещенных 6-хлор-6-метил-2-гептенов (вещества (4), (24), (45 α , β), (245 α , β), (455'b)). Влияние метильных групп (учитывая также их взаимодействие) в положениях 2, 3 и 5 на H^{OV-101} примерно одинаково (вещества (23), (25), (35)) и заметно усиливается при удлинении цепи (введение метильной группы в положение 7) (соединение (27)).

Структурный инкремент $\Delta I^{\text{TCEP}-\text{OV-101}}$ (табл. 1) варьируется от 141,5 (245 α) до 190,5 (2). Величины инкремента характеризуют также полярность сорбата по отношению к жидкой фазе и, естественно, что наибольшие значения $\Delta I^{\text{TCEP}-\text{OV-101}}$ наблюдаются для наименее разветвленного (2) и самого длинноцепочечного (27) соединений. Можно отметить, что одинаковая полярность имеет место для двузамещенных соединений (23), (25), (35), а метильная группа в положении 4 заметно снижает полярность (24), (45 α , β), (245 α , β). С увеличением числа заместителей $\Delta I^{\text{TCEP}-\text{OV-101}}$ также уменьшается (соединение (2355')).

Разность ΔI_(β-α) можно вычислить для диастереоизомеров (45α), (45β) и (245а), (245β). Для колонки с OV-101 она составляет 23,8 и 26,5 ед. ин. и для колонки с ТСЕР — 35,0 и 38,6 ед. ин. соответственно. Для диастереоизомеров 2,2,3,4-тетраметилгексана, который имеет сходные положения метильных групп с соединениями (45) и (245), $\Delta I_{100 \ ^{\circ}C \ (\beta-\alpha)}^{SQ}$ (разность индексов удерживания на сквалане) составляет 9 ед. ин. [6]. Isq легко пересчитать на величины IOV-101 [14], при этом величина Іоч-101 молекул алканов и алкенов приблизительно на 7 ед. ин. выше, чем величина Isq, следовательно, разности $\Delta I_{(\beta-\alpha)}^{SQ}$ H $\Delta I_{(\beta-\alpha)}^{OV-101}$ мало отличаются друг от друга и можно считать, что под влиянием функ- $\Delta I^{OV-101}_{(\beta-\alpha)}$ циональных групп (атома Cl и двойной связи) величина исследуемых соединений увеличивается приблизительно на 14-16 ед. ин.

Для определения структурного инкремента $\Delta I_{(CH_3)'}$ в случае введения одного метильного заместителя в молекулу соединения (0) необходимо было установить для него величину $I_{(0)}^{OV-101}$. Из [¹⁻⁶] можно было найти величины I^{SQ} некоторых модельных 2-алкенов и изоалканов и пересчитать их на величины $I_{80°C}^{OV-101}$. По данным наших расчетов, величина структурного инкремента $I_{(CH_3)'}^{OV-101}$ должна составлять 94 ед. ин. (разность между величинами I^{OV-101} 2(E)-гептена и 2-метил-2-гептена). Учитывая длину молекулы соединения (2) и наличие изолирующей двойной связи, можем пренебречь влиянием заместителей в положении 6 на $I_{(CH_3)'}^{OV-101}$ и вычислить $I_{(0)}^{OV-101}$ из выражения (1).

Итак, имеем

$$I_{(2)}^{OV-101} - I_{(0)}^{OV-101} = I_{(CH_3)^2}^{OV-101}$$

или, после преобразования и подстановки цифр, -

 $I_{(0)}^{\text{OV-101}} = I_{(2)}^{\text{OV-101}} - I_{(\text{CH}_3)^2}^{\text{OV-101}} = 1039,6 - 94 \approx 946$ ед. ин.

Используя рассчитанную величину, а также величину I^{OV-101} остальных исследуемых соединений (табл. 1), на основе выражения (1) можно найти инкременты $\Delta I^{OV-101}_{(CH_3)^i}$ (табл. 2). В случае диастереоизомеров для расчета $I^{OV-101}_{(CH_3)^i}$ использованы средние величины $I^{OV-101}_{(45)}$ и $I^{OV-101}_{(245)}$ соответственно (например, $I^{OV-101}_{(45)} = (I^{OV-101}_{(45\alpha)} + I^{OV-101}_{(45\beta)})/2$).

Как видно из табл. 2, сильно варьируются вклады метильных групп в положении 4, а также те вклады, при расчете которых использовались величины $I^{\rm OV-101}$ 4-метилзамещенных соединений. Это обусловлено, с одной стороны, влиянием двойной связи в β -положении ($\Delta I_{\rm (CH_3)^4}^{\rm OV-101}$ = 59 ед. ин. от разности I 4-метил-2(E)-гептена и 2(E)-гептена [⁴]), с другой — влиянием метильных заместителей в положении 6. Разность $I^{\rm OV-101}$

Таблица 2

Инкременты метильной группы в индексы удерживания 10V-101 и 1TCEP 80° С

в зависимости	OT	ее положения в м	олекуле	метилзамещенного
		6-хлор-6-метил-(Е)-гептена	L

	10V-101 (CH3) ¹	/TCEP (CH ₃) ^t	
j	Ĺ		The College and
$\begin{array}{c} (2) - (0)_{pacq} \\ (24) - (4) \\ (245) - (45) \\ (235) - (35) \\ (2355') - (355') \end{array}$	2	94 61,6 62,6 86,5 90,8	39,7 41,6 72,0 81,3
$\begin{array}{c} (23) - (2) \\ (235) - (25) \\ (2355') - (255') \end{array}$	3	90,1 91,0 108,6	75,1 76,6 102,8
$(4) - (0)_{pac4}$ (24) - (2) (245) - (25)	4	41 8,5 42,5	29,8 14,5
(25) - (2) (45) - (4) (245) - (24) (235) - (23)	5	87 119,6 120,5 87,9	71,8 114,2 116,1 73,3
$\begin{array}{c} (255') - (25) \\ (355') - (35) \\ (455'b) - (45) \\ (2355') - (235) \end{array}$	5′	81,7 97,0 58,8 99,3	72,3 89,0 62,8 98,3
(27) - (2)	7	109,7	95,4
(24)—(0) pacy	. 24	51,0*	
$(25) - (0)_{pacy}$ (245) - (4) (2355') - (35)	25	90,3* 91,1* 92,8*	77,9* 85,2*
$(35) - (0)_{pacu}$ (235) - (2) (2355') - (25)	35	92,6* 89,0* 95,2*	74,2* 87,5*
(45)—(0)	45	60,2*	
(455')-(4) (255')-(2) (2355')-(23)	55′	89,4* 84,4* 93,8*	88,5* 72,1* 85,8*

Величина инкремента дана в пересчете на одну метильную группу.

2,2,4-триметилгептана и 2,2-диметилгептана составляет 62 ед. ин. [²], и можно предположить, что с заменой одной метильной группы на Cl величина ΔI^{OV-101} уменьшится до приведенной в табл. 2.

С одновременным введением двух метильных заместителей в соединение (0) в положения 2 и 4 (соединение (24)) $I_{(24)}^{OV-101}$ только на 102 ед. ин. больше, чем $I_{(0)}^{OV-101}$ (51 ед. ин. на одну метильную группу), в то время как сумма инкрементов $I_{(CH_3)^2}^{OV-101}$ и $I_{(CH_3)^4}^{OV-101}$ составляет 135 ед. ин. ($I_{(CH_3)^{44}}^{OV-101}$ =141 ед. ин. от разности I 2,4-диметил-2-гептена и 2(E)-гептена [⁴]). Следовательно, при введении метильной группы в положение 4 соединения (2) (или в положение 2 соединения (4)) возникают новые интеракции, которые не ожидались по аддитивности инкрементов. Высокое значение $I_{(CH_3)^7}^{OV-101}$ (109,7 ед. ин.) объясняется ростом цепи

и увеличением в связи с этим сорбционных свойств молекулы в жидкой фазе.

фазе. Весьма неожиданным был тот факт, что повышенные значения $I_{(CH)}^{OV-101}$ наблюдались в случаях их расчета относительно $I_{(2355')}^{OV-101}$, хотя, судя по уменьшению полярности ($\Delta I^{TCEP-OV-101}$), следовало бы ожидать обратной картины. Вероятно, это связано с малой подвижностью этой разветвленной молекулы.

Вышеприведенные рассуждения справедливы и для инкрементов $\Delta I_{(CH_3)'}^{TCEP}$, только их значения меньше, чем $\Delta I_{(CH_3)'}^{OV-101}$. А тот факт, что введение 4-метильной группы в соединение (2) даже уменьшает $I_{(24)}^{TCEP}$ по сравнению с $I_{(2)}^{TCEP}$ ($I_{(CH_3)'}^{TCEP} = -29,8$ ед. ин.), еще раз указывает на то, что заместитель в положении 4 совершенно изменяет свойства молекулы.

Выводы

1. Установлены коэффициенты регрессионных уравнений

И

I = a + b/T

I = a' + b'/(c' + T),

характеризующие температурную зависимость индексов удерживания метилзамещенных 6-хлор-6-метил-2(E)-гептенов на колонках с OV-101 (уравнение (2)) и с TCEP (уравнение (3)).

2. При температуре 80 °C определены структурные инкременты Δ*I*^{тсер}-оv-101, *H*^{OV-101}, Δ*I*_(β-α) и Δ*I*_(CH₃). Последний характеризует вклад в индекс удерживания введенной метильной группы и рассчитывается как разность величин *I* двух соединений с различным числом метильных заместителей.

3. Рассмотрена связь между структурой соединений и величиной инкремента ΔI^{OV-101} при 80 °C. Найдено, что вклад метильной группы зависит от ее положения в молекуле и от влияния других заместителей. Наиболее резко это проявляется для заместителя в положении 4.

- Dubois, J. E., Chretien, J. Topological analysis of gas-liquid chromatographic behavior of alkenes // Anal. Chem., 1977, 49, N 6, 747-756.
 Mitra, G. D., Mohan, G., Sinha, A. Gas chromatographic analysis of complex hydro-carbon mixtures // J. Chromatogr., 1974, 91, 633-648.
 Rijks, J. A., Cramers, C. A. High precision capillary gas chromatography of hydro-carbons // Chromatographia, 1974, 7, N 3, 99-106.
 Schröder, H. The retention indices of hydrocarbons up to C₁₄ for the stationary phase squalane // J. High Res., 1980, 3, N 1, 38-44.
 Hizelu R. A. Hinton, R. E. Variation of the retention index with temperature on
- *Hively, R. A., Hinton, R. E.* Variation of the retention index with temperature on squalane substrates // J. Gas Chromatogr., 1968, 6, N 4, 203–217. *Matukuma, A.* Retention indices of alkanes through C₁₀ and alkenes through C₈ and 5
- relation between boiling points and retention data // Gas Chromatography 1968. London, 1969, 55-75.
- Haken, J. K., Vernon, F. Gas chromatography of halogenated derivatives of cyclo-hexane, benzene and anisole // J. Chromatogr., 1986, 361, 57—61. Мукс Э. Сопоставление реакций электрофильного присоединения. Конкурирующие 7.
- направления, определяемые строением алкена // Изв. АН ЭССР. Хим., 1987, 36,
- № 2, 103—113. Мукс Э. А., Эрм А. Ю., Лыйвеке И. А., Тенг С. Э., Крумм Л. Л., Лээтс К. В. К изу-чению ионно-каталитической теломеризации. XXV. Стерический эффект алкиль-ных заместителей // Ж. орг. хим., 1988, 24, № 9, 1838—1842. Пекк Т., Ранг Х., Чернышев В., Эрм А., Лээтс К. Применение спектроскопии ЯМР 9
- 10. ¹³С для структурного анализа продуктов реакции теломеризации // Изв. АН ЭССР. Хим., 1978, 27, № 3, 184—188.

- ЭССР. Хим., 1978, 27, № 3, 184—188.
 11. Ettre, L. S. Generalized equations to evaluate the gas hold-up time of chromato-graphic systems // Chromatographia, 1980, 13, N 2, 73—84.
 12. Эрм А., Лыйвеке И., Шмидт М. Капиллярная газовая хроматография диэфиров З-метил-2-пентен-1,5-диола // Изв. АН ЭССР. Хим., 1988, 37, № 1, 37—43.
 13. Ettre, L. S. The retention index systems, its utilization for substance identification and liquid phase characterization. II. Correlation between retention index structure and analytical characteristics // Chromatographia, 1974, 7, N 1, 39—49.
 14. Boneva, S., Dimov, N. Gas chromatographic retention indices for alkenes on OV-101 and squalane canillary columns // Chromatographia, 1986, 21 N 3, 149—151.

and squalane capillary columns // Chromatographia, 1986, 21, N 3, 149-151.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 12/XII 1988

A. ERM, Elvi MUKS, Ilme LÕIVEKE, Mare HEINVÄLI

6-KLOOR-6-METÜÜL-2(E)-HEPTEENI METÜÜLDERIVAATIDE **KAPILLAARGAASIKROMATOGRAAFIA**

On esitatud 6-kloor-6-metüül-2(E)-hepteeni 18 metüülderivaadi retentsiooniindeksid ning temperatuuri- ja struktuuriinkreimendid, mis on määratud 50-meetrises klaaskapil-laarkolonnis mittepolaarsel silikoonil OV-101 ja 25-meetrises klaaskapillaarkolonnis polaarsel 1,2,3-tris (2-tsüaanetoksü) propaanil.

Lähemalt on uuritud retentsiooniindeksi muutusi metüülrühmade sissetoomisel 10 V-101 6-kloor-6-metüül-2(E)-hepteeni molekuli, iseloomustades seda inkremendi $80^{\circ}C (CH_3)^{t} =$

 $=I^{OV-101}-I^{OV-101}$ väärtusega, kusjuures i ja j näitavad metüülrühmade asendit 80°C (ij) 80°C (j) molekulis.

A. ERM, Elvi MUKS, Ilme LÕIVEKE, Mare HEINVÄLI

CAPILLARY GAS CHROMATOGRAPHY OF METHYL SUBSTITUTED 6-CHLOR-6-METHYL-2(E)-HEPTENES

Retention indices I, their temperature and structural increments for 18 methyl substituted 6-chlor-6-methyl-2(E)-heptenes on nonpolar silicon OV-101 liquid phase in a 50 m glass capillary column and highly polar 1,2,3-tris (2-cyanoethyl) propane (TCEP) liquid phase in a 25 m glass capillary column are presented. It has been found that the methyl group increment depends on its position in the molecule.