EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. КЕЕМIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ХИМИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. CHEMISTRY

1988, 37, 3

УДК 661.242.2.014+661.561.014

Э. АРУМЭЭЛЬ, Е. КУДРЯВЦЕВА

О ВЗАИМОДЕЙСТВИИ ПИРИТА С АЗОТНОЙ КИСЛОТОЙ

(Представил М. Вейдерма)

Разложение фосфатного сырья азотной кислотой обычно сопровождается выделением оксидов азота. Источниками последних являются, с одной стороны, сама техническая азотная кислота [¹], с другой — взаимодействующие с азотной кислотой закисные формы железа, содержащиеся в минеральной части, а также органическое вещество [²]. Потери азотной кислоты наиболее существенны при переработке пиритсодержащих фосфоритов, например фосфоритов прибрежной зоны Прибалтийского бассейна [^{3–5}], при этом они пропорциональны содержанию сульфидной серы в сырье [⁶]. Установлено, что величина потерь зависит также от технологических параметров процесса разложения, в особенности от концентрации азотной кислоты [³]. В настоящей работе поставлена цель уточнить химизм взаимодействия пирита с азотной кислотой в зависимости от концентрации последней. Литературных данных по этому вопросу нами не найдено.

Исходный образец природного пирита содержал 98,0% FeS₂, 0,25% SiO₂, 0,2% сульфатной серы и 0,85% нерастворимого остатка. Пирит измельчали до размера частиц 0,15 мм. Навеску пирита в количестве 0,37 г (3,0 ммоля) разлагали в стеклянной колбе в атмосфере гелия при 70 °С азотной кислотой в концентрации 60, 45, 35, 25 и 15%. Количество 100%-ной азотной кислоты всегда составляло 4,1 г за исключением одного опыта (№ 1 в табл. 1), когда ее было 8,2 г. При всех концентрациях кислоты пирит полностью разлагался за 30 мин, при 15%-ной же концентрации для этого потребовалось до 60 мин. Окраска выделяющихся газов менялась от темно-бурой (NO₂) до бесцветной (NO, N₂O) с переходом от более высоких концентраций кислоты к более низким. Было обнаружено и образование серы, особенно при концентрациях кислоты 25 и 15%. Отходящие из реакционной колбы газы пропускали через три абсорбера с 5%-ным раствором пероксида водорода. По окончании опыта определяли по разности исходной и конечной концентраций H₂O₂ в абсорберах его расход на окисление оксидов азота, а титрованием раствором NaOH — количество образовавшейся азотной кислоты. Последнее определяли также по разности исходного и конечного количества азотной кислоты в реакционной колбе.

При взаимодействии пирита с азотной кислотой (в случае окисления сульфидной серы до сульфатной) могут протекать следующие реакции:

$$FeS_2 + 15NO_3^- + 14H^+ = Fe^{3+} + 2SO_4^2 + 7H_2O + 15NO_2,$$
 (1)

$$FeS_2 + 5NO_- + 4H^+ = Fe^{3+} + 2SO_-^2 + 2H_2O + 5NO,$$
 (2)

 $8FeS_2 + 30NO_3^- + 22H^+ = 8Fe^{3+} + 16SO_4^{2-} + 11H_2O + 15N_2O,$ (3)

$$2FeS_2 + 6NO_7 + 4H^+ = 2Fe^{3+} + 4SO_7^2 + 2H_2O + 3N_2, \qquad (4)$$

$$8FeS_2 + 15NO_3^{-} + 22H^{+} + 19H_2O = 8Fe^{3+} + 16SO_4^{2-} + 15NH_4^{+}.$$
 (5)

165

Реакция (5) не протекала из-за отсутствия аммониевого иона в продуктах реакции. Как видно, расход азотной кислоты на окисление пирита изменяется в большом диапазоне в зависимости от глубины ее восстановления — от 15 молей при образовании NO_2 до 3 молей при образовании N_2 на 1 моль FeS₂. Аналогично изменяется и количество выделяющихся газов. При окислении сульфидной серы до элементарной расход азотной кислоты еще больше уменьшается: при образовании NO он составляет всего 1 моль на 1 моль FeS₂

$$FeS_2 + NO_2^- + 4H^+ = 2S + Fe^{3+} + 2H_2O + NO.$$
 (6)

При пропускании газовых продуктов реакции через раствор пероксида водорода оксиды азота окисляются по следующим реакциям:

 $2NO_2 + H_2O_2 = 2HNO_3,$ (7)

$$2NO+3H_2O_2=2HNO_3+2H_2O_3$$
 (8)

$$N_2O + 4H_2O_2 = 2HNO_3 + 3H_2O_.$$
 (9)

Из сравнения реакций (1)—(3) с реакциями (7)—(9) соответственно следует, что для оксидов азота, выделяющихся при реагировании 1 моля FeS₂, расходуется одинаковое количество пероксида водорода — 7,5 моля. Исключение составляет реакция(4), в ходе которой азот, проходя абсорберы, не реагирует с пероксидом водорода.

По расходу пероксида водорода и гидроксида натрия (на нейтрализацию образовавшейся HNO₃) мы рассчитали количественный состав выделяющихся оксидов азота. С другой стороны, состав газа рассчитали по расходу азотной кислоты на окисление пирита. Расчет корректен лишь в случае двухкомпонентного состава оксидов азота.

Таблица 1

Результаты изучения взаимодействия пирита с азотной кислотой в атмосфере гелия Условия экспериментов: темп. 70 °С, время опыта 30 мин, количество FeS₂ 3,0 ммоля

edihirihon (NO, NzO) e	Номер опыта							
клоты колосо и изкол. Хийведтиенной колосо	1	2	3	4	5	6		
Концентрация HNO ₃ , % в начале опыта в конце опыта	60 49	60 32	45 26	35 23	25 17	15 9		
Расход Н2О2, ммоль	22,0	22,3	22,2	21,2	17,6	17,0		
Количество прореагировав- шего пирита, %	97,8	99,0	98,7	94,2	78,2	75,6		
Расход NaOH, ммоль	21,00	18,52	16,42	13,02	10,75	9,15		
Расчетный состав выделяю- щихся оксидов азота, % NO2 NO NO N2O	45 55	30 70	15 85	85 15	(84) (16)	(44) (56)		
Количество выделяющихся оксидов азота на 1 моль FeS ₂ , моль	7,2	6,2	5,5	4,6	3,6	3,1		
Потери HNO ₃ (в пересчете н 100%-ную) на 1 г FeS ₂ , г	a 3,8	3,3	2,9	2,4	1,9	1,6		

(0,37 г)

Как показывают расчетные данные (табл. 1), при 35%-ной концентрации кислоты и выше пирит реагирует практически полностью — в пределах 94-99%. При более низких концентрациях — только на 75-78%. В связи с этим можно предположить, что в последнем случае выделяется молекулярный азот, который не реагирует с пероксидом водорода. Однако определением суммарного количества азота в виде оксидов, выделяющихся и реагирующих с H_2O_2 либо растворяющихся в реакционной массе, получается, что и при низких концентрациях коэффициент разложения пирита составляет около 95%.

Кроме того, при низких концентрациях HNO₃ образовывалась элементарная сера, при этом меньше выделялось оксидов азота (6). Определением количества выделенной серы найдено, что содержание газов уменьшается при этом на 5%. Очевидно, часть газов растворяется в кислоте, к примеру N₂O хорошо растворяется в воде.

Представленный состав выделяющихся газов, приблизительный и рассчитанный, корректен лишь в случае двухкомпонентного состава оксидов азота. Действительно, в третьем опыте можно предполагать выделение N₂O, а в четвертом — NO₂, хотя бы в незначительном количестве. Результаты, полученные в пятом и шестом опытах с применением HNO₃ 25%-ной концентрации и ниже, поставлены в скобки, поскольку в расчетах не учтено образование серы, а также возможность растворения выделяющихся оксидов азота в оставшейся реакционной массе (табл. 1).

Как видно из этих данных, расход азотной кислоты значительно зависит от концентрации применяемой HNO₃. Например, расход 15%-ной азотной кислоты примерно в 2 раза меньше, чем расход 60%-ной.

Для сравнения приведем опытные данные, которые получены при разложении эстонских фосфоритов азотной кислотой 30%-ной концентрации при температуре 75 °С (табл. 2) [⁴].

Таблица 2

Фосфорит			Потери 100%-ной HNO3, г		
	Содержание пиритной серы SO ₃ , %	Содержание FeS ₂ в 1 кг фосфорита, г	на 1 кг фосфорита	на 1 г FeS ₂	
Тоолсеский	1,86	13,9	31,6	2,27	
Маардуский	4,97	37,3	74,0	1,98	

Результаты взаимодействия фосфорита с азотной кислотой

В случае реагирования чистого пирита с кислотой той же концентрации потери HNO₃ с выделяющимися газами были равными — 2,2 г на 1 г FeS₂, что близко к значениям потерь HNO₃ в табл. 2.

Проведенное исследование показало, что потери азотной кислоты при разложении эстонских фосфоритов зависят главным образом от содержания в них пирита. Химизм взаимодействия азотной кислоты с пиритом, а также количество и состав выделяющихся газов различны при различной концентрации кислоты.

ЛИТЕРАТУРА

- Гольдинов А. Л., Абрамов О. Б., Шишканов А. П. Об источниках образования окислов азота при разложении апатитового концентрата азотной кислотой. Ж. прикл. химии, 1977, L, № 6, 6.
- Вольфкович С. И., Соколовский А. А. Комплексные удобрения на основе азотнокислотного разложения фосфатов. — Успехи химии, 1974, XLIII, № 3, 564.

States top 1

- 3. Аасамяэ Э. Э., Вейдерма М. А., Кудрявцева Е. Н. Исследование азотнокислотного разложения тоолсеского фосфорита. — Тр. Таллин. политехн. ин-та. Неорг. химия и технология I, 1980, № 479, 3-11.
- Аасамяэ Э., Вейдерма М. Влияние добавки карбамида на азотнокислотно-сульфат-ную переработку природных фосфатов. Изв. АН ЭССР. Хим., 1983, 32, № 1, 4 1-7.
- 5. Аасамяэ Э., Вейдерма М. Азотнокислотно-сульфатная переработка фосфоритов Рак-
- вереского месторождения. Изв. АН ЭССР. Хим., 1984, 34, № 2, 73—78. *Кудрявцева Е. Н., Аасамяэ Э. Э., Вейдерма М. А.* Влияние состава фосфатного сырья на его азотнокислотную переработку. Тр. Таллин. политехн. ин-та, Неорг. химия и технология II, 1983, № 542, 11—23.

Таллинский политехнический институт

Поступила в редакцию 25/II 1988

E. ARUMEEL, J. KUDRJAVTSEVA

PÜRIIDI REAGEERIMINE LÄMMASTIKHAPPEGA

On uuritud loodusliku püriidi reageerimist erineva kontsentratsiooniga lämmastikhappega 70 °C juures. Reaktsioonil eraldunud lämmastikoksiidid määrati kvalitatiivselt ja kvantitatiivselt. Saadud tulemustest selgus, et happe kontsentratsiooni vähenemisel tekivad madalama oksüdatsiooniastmega lämmastikoksiidid ja väheneb reaktsiooniks vajalik lämmastikhappe hulk.

E. ARUMEEL, Ye. KUDRJAVTSEVA

THE REACTION OF PYRITE WITH NITRIC ACID

An analysis of the reactions of natural pyrite with nitric acid of different concentra-tion at 70 °C has been studied. In these processes separated nitric oxides were qualitati-vely and quantitatively investigated. The results show that a more dilute nitric acid gives nitric oxides with a lower oxidation degree and the necessary quantity of nitric acid for reaction diminishes.