1987, 36, 3

https://doi.org/10.3176/chem.1987.3.09

УДК 541.183.26

Виргиния АРРО, И. АРРО

ИССЛЕДОВАНИЕ НИЗКОТЕМПЕРАТУРНОЙ АДСОРБЦИИ АЗОТА НА ПОВЕРХНОСТИ ОКСИДОВ ГАЛЛИЯ И ИНДИЯ

(Представил О. Эйзен)

Известно, что оксиды некоторых металлов III группы периодической системы, в частности Al₂O₃, Ga₂O₃ и In₂O₃, хорошие катализаторы и адсорбенты, но их свойства, кроме оксида алюминия изучены мало.

В данной работе исследовалась низкотемпературная адсорбция азота на α- и β-модификациях оксидов галлия и на оксиде индия.

α-Модификация оксида галлия со структурой корунда была синтезирована прокаливанием нитрата галлия ос. ч. при температуре 400— 450 °C. Полученный оксид промывали дистиллированной водой до прекращения реакции на NO₃⁻ и высушивали при температуре 120 °C. Исследовали два образца α-модификации оксида галлия: один — сразу после его изготовления, другой — после годичного хранения в нормальных лабораторных условиях.

Структура α- и β-модификаций оксида галлия была установлена рентгеноструктурным анализом. Моноклинная β-модификация оксида галлия и оксид индия (кристаллизуется в кубической решетке) были ос. ч.

До измерения все адсорбенты подвергали дегазации в течение 24 ч в потоке гелия при температуре 250 °С. Время дегазации свежеприготовленной а-модификации оксида галлия увеличивали еще вдвое, т. е. 48 ч, чтобы изучить влияние длительного нагревания на свойства ее поверхности.

Количество адсорбированного азота V_а при температуре —196 °С измеряли в пределах относительных давлений *p*/*p*₀ от 0,018 до 0,545 с помощью хроматографической установки «Сорбтометр EM-31». На основе экспериментальных данных строили изотермы низкотемпературной адсорбции азота (рис. 1).

Все полученные изотермы, согласно классификации Брунауэра [¹], относятся к II типу и имеют довольно длинный прямолинейный участок. Начальная точка этого прямолинейного участка, обозначенная на рис. 1 буквой «В» [¹], указывает на окончание заполнения монослоя. Поэтому адсорбция в точке B (V_B) равна емкости монослоя (V_m). Значение V_B для очень многих систем хорошо согласуется со значением V_m , рассчитанным по уравнению БЭТ:

$$\frac{p}{V_a(p_0 - p)} = \frac{1}{V_m \cdot C} + \frac{C - 1}{V_m \cdot C} \cdot \frac{p}{p_0}, \qquad (1)$$

где С — постоянная, связанная с теплотой адсорбции.

В данной работе емкость монослоя азота на исследованных оксидах определяли в точке *В* и графически вычисляли по уравнению БЭТ (1) в линейной области графика до относительного давления 0,3. Кроме того,

5 ENSV TA Toimetised. K 3 1987

Рис. 1. Изотермы адсорбции азота при —196 °С на In₂O₃ (I, 1); β-Ga₂O₃ (I, 2); α-Ga₂O₃ годичной выдержки (II, 3); свежеприготовленном α-Ga₂O₃, время дегазация 48 ч (II, 4); свежеприготовленном α-Ga₂O₃, время дегазации 24 ч (II, 5).

по уравнению БЭТ определяли постоянную *С.* С использованием полученных значений емкостей монослоя вычисляли удельные поверхности исследованных оксидов по формуле:

портали дегазации в течение

$$S = V \cdot \omega_0, \tag{2}$$

где S — удельная поверхность, м²/г; V — емкость монослоя, мл/г; ω_0 — площадь, покрываемая монослоем 1 см³ азота, которая была принята равной 4,39 м² [²].

Сравнение полученных результатов показало, что значение V_B и V_m довольно хорошо согласуются между собой для всех исследованных оксидов (табл. 1). Это объясняется резким изгибом изотерм, позволяю-

Таблица 1

	Емкость монослоя, мл/г		С	Удельная поверхность, м ² /г		
Оксид				0	0	C
ROCAON (Vm). SHAYE	V _B	Vm	(aV)	SB	з _{БЭТ}	St
In ₂ O ₃	0,79	0,74	192	3,9	3,2	3,2
β-Ga ₂ O ₃	3,3	3,3	100	14,5	14,5	14,9
α-Ga ₂ O ₃ (годичной выдержки)	13,0	12,9	111	57,1	56,6	55,7
α-Ga ₂ O ₃ (свежеприготовленный, время дегазации 24 ч)	16,6	16,8	99	72,9	73,8	73,1
α-Ga ₂ O ₃ (свежеприготовленный, время дегазации 48 ч)	14,8	14,7	96	65,0	64,5	63,4

щим легко определить точку *B*, и их положением в области давлений, соответствующих линейному участку графика БЭТ [³].

 α -Модификация оксида галлия, приготовленная разложением нитрата галлия, имеет значительно бо́льшую удельную поверхность, чем β -модификация. При хранении в нормальных лабораторных условиях и при нагревании удельная поверхность α -модификации оксида галлия заметно снижалась (примерно до 25%). Такое изменение удельной поверхности в процессе нагревания необходимо учитывать при проведении адсорбционных исследований. Поэтому в настоящей работе более подробно исследовали зависимости удельной поверхности свежеприготовленного α -Ga₂O₃ от температуры и времени нагревания (табл. 2).

Таблица 2

Свежеприготовленный Ga ₂ O ₃					
температура дегазации, °С	время дегазации, ч	удельная поверхность, м ² /г			
60	2	65			
100	2	71			
150	2	73			
200	2	74			
250	2	78			
250	24	74			
250	48	65			
350	2	72			
400	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	56			
400	8	55			
400	12	53			

Из данных табл. 2 видно, что подходящие температуры дегазации α -Ga₂O₃ находятся в пределах от 150 до 250 °C. Если в интервале указанных температур нагревание длится меньше 24 ч, то заметных изменений в величине удельной поверхности нет. Уменьшение удельной поверхности примерно на 10% наблюдается при нагревании адсорбента при 250 °C до 48 ч. Использование более высоких температур (400 °C) для дегазации α -Ga₂O₃ вызывает уже в течение сравнительно короткого времени (4 ч) уменьшение величины удельной поверхности примерно на 25%.

Для получения информации о пористости исследованных адсорбентов использовали t-метод Липпинса [⁴], так как полученные нами значения константы C уравнения БЭТ для оксидов галлия и индия (табл. 1) находятся в тех же пределах, что и установленные в [⁴].

Для вычисления статистической плотности *t* адсорбированного слоя пользовались уравнением [⁵]

$$t = \left(\frac{13,99}{0,034 - \lg p/p_0}\right)^{1/2} .$$
 (3)

При отсутствии на поверхности адсорбента микропор и капилляров зависимость V_a/t является линейной и кривая пересекает нулевую точку. Величина удельной поверхности может быть вычислена тогда по тангенсу угла наклона прямой по формуле

$$V_a = \frac{S}{15,47} \cdot t. \tag{4}$$

223

Кривая зависимости V_a/t для оксида индия и β -модификации оксида галлия пересекает нулевую точку и является прямолинейной во всей исследованной области (рис. 2). Вычисленные по тангенсу угла наклона V_a/t -кривой удельные поверхности S_t этих оксидов (табл. 1) отличаются от удельных поверхностей $S_{\rm БЭТ}$ не более чем на 3%. Такое довольно хорошее совпадение подтверждает правильность выбора t-кривой.

Рис. 2. V_a/t-кривые адсорбции азота на In₂O₃ (I, 1) и β-Ga₂O₃ (II, 2).

Все V_a/t -кривые для исследованных α -модификаций оксида галлия имеют отклонения от прямолинейности (рис. 3), что свидетельствует о пористой структуре образцов.

Рис. 3. V_a/t-кривые адсорбции азота на α-Ga₂O₃ годичной выдержки (1), на свежеприготовленном и подвергнутом дегазации в течение 48 ч (2) и 24 ч (3).

Расположение адсорбционной кривой выше t-кривой говорит о наличии капиллярной конденсации, т. е. адсорбент набирает на свою поверхность больше адсорбата, чем требуется для заполнения монослоя [6].

Для исследованных образцов α-модификации оксида галлия капиллярная конденсация начинается при относительных давлениях $p/p_0 =$ =0,3-0,4. Вычисленные значения St и SEPT отличаются не более чем на 2%.

ЛИТЕРАТУРА

- Грег С., Синг К. Адсорбиня, удельная поверхность, пористость. М., 1970, 68.
 Huang, C. P., Stumm, W. The specific surface area of Al₂O₃. Surface Sci., 1972, 32, N 2, 287—296.
- 32, N 2, 287-296.
 Брунауэр С. Адсорбция газов и паров, I. M., 1948, 139-194.
 Boer, J. H. de, Lippens, B. C., Linsen, B. C., Brokholf, J. C. P., Heuvel, A. A. van den, Osinga, Th. J. The t-curve of multimolecular N₂ adsorption. J. Colloid and Interface Sci., 1966, 21, 405-414.
 Boer, J. H. de, Linsen, B. G., Osinga, Th. J. Studies on pore systems in catalysts. J. Catal., 1965, 4, 643-648.
 Lippens, B. S., Boer, J. H. de. Studies on pore systems in catalysts. J. Catal., 1965, 4, 319-323.

Институт термофизики и электрофизики Академии наук Эстонской ССР

Поступила в редакцию 27/I 1987

Virginia ARRO, I. ARRO

LÄMMASTIKU MADALATEMPERATUURILISE ADSORPTSIOONI UURIMINE INDIUM- JA GALLIUMOKSIIDIDEL

Lämmastiku madalatemperatuurilise adsorptsiooni uurimine galliumoksiidi α - ja β -Lammastiku madalatemperatuuriise adsorptsiooni uurimine galiumoksiidi α - ja p-modifikatsioonidel ning indiumoksiidil näitas, et saadud tulemustest eripinna arvutamine BET-meetodil ning Lippensi *t*-meetodil annab praktiliselt ühtelangevad tulemused. Värs-kelt valmistatud α -Ga₂O₃ eripind oli vastavalt 73,8 ja 73,1, β -Ga₂O₃ — 14,5 ja 14,9 ning In₂O₃ — 3,2 ja 3,2 m²/g. Kasutades *t*-meetodit on tuvastatud, et α -Ga₂O₃, mis on saadud galliumnitraadi lagundamisel temperatuuril 400—450 °C, on poorne. α -Ga₂O₃ eripind väheneb pikaajalisel seismisel normaalsetes laboratoorsetes tingimustes, samuti ka kuu-mutamisel (250 °C) kuni 25%.

Virginia ARRO, I. ARRO

INVESTIGATION OF THE LOW TEMPERATURE ADSORPTION OF NITROGEN ON INDIUM AND GALLIUM OXIDES

The results in studying the low temperature adsorption of α - and β -modifications of Ga₂O₃ have shown that the value of specific surface areas calculated by BET method Ga_2O_3 have shown that the value of specific surface areas calculated by BET method and the Lippens t-method agree well. The specific surface area of fresh α -Ga₂O₃ was 73.8 and 73.1; β -Ga₂O₃ 14.5 and 14.9; In_2O_3 3.2 and 3.2 m²/g, respectively. It has been determined by the t-method that α -Ga₂O₃ prepared by the decomposition of gallium nitrate at 400–450 °C is porous. The specific surface area of α -Ga₂O₃ decreases con-siderably (up to 25%) at room temperature during its shelf life and by heating it (over 250 °C).