1987, 36, 3

https://doi.org/10.3176/chem.1987.3.04

УДК 543.544.45:547.424.1

У. МЯЭОРГ, Мийа КАРРО, Х. ТИМОТЕУС, Эбба ЛООДМАА

РАЗДЕЛЕНИЕ ДИАСТЕРЕОМЕРОВ НЕКОТОРЫХ β-ДИОЛОВ МЕТОДОМ ГАЗОЖИДКОСТНОЙ ХРОМАТОГРАФИИ НА ЖИДКОКРИСТАЛЛИЧЕСКИХ ФАЗАХ

(Представил Ю. Лилле)

β-Диолы широко применяются в качестве экстрагентов борной кислоты из водных растворов [¹], пластификаторов [²], а также в качестве промежуточных продуктов в органическом синтезе [³].

Для решения многих теоретических и практических проблем (стереохимия альдольной конденсации, восстановление дикетонов, кетолов и альдолей) требуется определение диастереомерного состава β-диолов. Предполагается, что и при экстракции борной кислоты β-диолами важную роль играет диастереомерный состав экстрагента [⁴].

Для разделения диастереомеров обычно используют ГЖХ на капиллярных колонках [⁵].

В литературе описаны также методики разделения диастереомеров 2,3-бутандиола [⁶], ряда ненасыщенных α-гликолей [⁷] и некоторых сложных эфиров 2,3-бутандиола [⁸] на насадочных колонках. Однако систематических исследований по разделению диастереоизомеров β-диолов не проводилось.

Перед нами стояла цель изучить возможности разделения диастереомеров разных β -диолов на насадочных колонках с жидкокристаллическими фазами и выяснить влияние структуры β -диолов на этот процесс.

Экспериментальная часть

ГЖХ проводили на хроматографах «Цвет-152» и «Chrom-5» (ЧССР) с пламенно-ионизационными детекторами, газ-носитель — азот. Были использованы четыре стеклянные колонки:

1) 2,5 м×2 мм, 10% 4- (п-метоксициннамоилокси) -4'-метоксиазобензола (жидкий кристалл H-158 с мезофазой 167,5—340 °C) на Хромосорбе W-HP, 100—120 меш;

2) 3 м×3 мм, 10% 1,4-бис (4'-н-гептилоксибензонлокси) бензола (жидкий кристалл H-6 с мезофазой 109,7—199 °С) на Хроматоне N-супер, 0,125—0,160 мм;

3) 2,5 м×3 мм, 10% 4,4'-диметоксиазоксибензола (жидкий кристалл с мезофазой 118,2—135,3 °С) на Хроматоне N-AW-DMCS, 0,125—0,160 мм;

4) 2,5 м×3 мм, 5% Карбовакса 20М на Хроматоне N-AW-DMCS, 0,125-0,160 мм.

Изученные нами β-диолы были синтезированы по опубликованным методикам [9]. Соответствующие физико-химические константы приведены в табл. 1.

Таблица 1

Физико-химические константы изученных β-диолов

Но- мер	Соединение	t _{кнп} , °С/мм рт. ст.	n_{D}^{20}
I	он он	140—145/5	1,4460
II	он он	110—112/1,5	1,4512
III	ОН ОН	160—169/5	1,4480
IV	он он	121—123/3	1,4460
V	он он	140—150/5	. 1,4473
VI	он он	166—170/5	1,4490
VII	ОН	135—137/3	1,4520
	но		
VIII	ОН	140—142/3	1,4540
IX	Но	155—160/3	1,4555

По данным ЯМР-спектроскопии, диастереомеры в этих соединениях содержались в сравнимых соотношениях.

Структура изученных соединений была доказана спектрами ЯМР ¹³С, измеренными на приборе АМ-500 фирмы «Вгикег» (ФРГ), а также ИК-спектрами (ИКС-29).

Триметилсилильные производные получали, обрабатывая соответствующие диолы триметилхлорсиланом в присутствии пиридина согласно методике [¹⁰]. Для ГЖХ анализа использовали 1%-ные растворы β-диолов в диэтиловом эфире.

Обсуждение результатов

Условия разделения диастереомеров β-диолов изучали на жидкокристаллических фазах, которые, по данным литературы, проявляют наивысшую селективность при разделении геометрических изомеров производных алкенов [¹¹] и замещенных бензолов [¹²]. В качестве эталона служила полярная изотропная фаза Карбовакс 20М (табл. 2).

Таблица 2

Номер колонки	Температура анализа, °С	Соединение	Время удерживания $t_{R}^{}$, мин	Коэффициент разделения $R = \frac{2d}{\omega_1 + \omega_2}$
1	130,0	the store and	10,2; 11,4	1,2
	130,0	II	18,4; 20,6	1,4
	131,0	III	73,6; 82,9	1,7
	150,0	III	31,0; 34,8	1,1
		IV	9,0; 9,9	0,5
	131.0	V	15,8; 16,7; 17,8	0,6; 0,7
	131,0	VI	44,0; 46,8; 50,5	0,7; 1,0
	130,0	VII	9,6	an Ball - Plennen
	108.0	VIII	25,2	crash u collo vic
	131.0	IX	49,0	
2	121.0	ICOTOREIL	11,7; 12,6	0,5
	121.0	II III	32,5; 35,3	~0,5
	121.0	IV	9,8	f lenidopl-ous sea
	121.0	VIII	35,6	ives hroma
3	120.0	I	26,6; 28,4	0,6
-1910	120.0	IV	19,9	CONCILIS CHARME
4	155.0	I G TO	9,2	weathe softwar
13	155,0	IV	7,4	s. 2. M. ++12. 13-

Результаты хроматографического разделения диастереомеров β-диолов

Установили, что наилучшее разделение достигается на 1-й колонке (с фазой H-158) и посредственное — на 2-й и 3-й колонках. Температура мезофазы 3-й колонки слишком низка для разделения β-диолов, а полярная изотропная фаза является неселективной относительно изученных диастереомеров.

Как известно, на жидкокристаллических неподвижных фазах соединения разделяются согласно разницам соотношений «длина» : «ширина» молекул [12]. Этот принцип наблюдался и в данном случае. С увеличением длины углеводородной цепи коэффициент разделения (R) диастереомеров 2,4-диолов от I до IV значительно увеличивается. При этом последовательность выхода диастереомеров остается неизменной: $t_{\rm peurpo}^{\rm purpeo} > t_{\rm peo}^{\rm rec}$.

Объяснить этот факт можно тем, что строение молекул эритро-изомеров более стержнеобразное, чем трео-изомеров, а следовательно, они легче входят в кристаллическую решетку жидкого кристалла и имеют большее время удерживания.

В случае 3-метилзамещенных 2,4-диолов происходило лишь частичное разделение днастереомеров.* У соединений V и VI два изомера полностью перекрывались, а в случае IV наблюдались только два неразделенных пика.

Диастереомеры с асимметрическими центрами на соседних углеродных атомах (VII—IX) в этих условиях не разделились.

Несомненный вклад в ориентацию изомеров β-диолов вносит внутримолекулярная водородная связь [¹³], которая образуется как в эритро-, так и в трео-изомерах. Но в последнем случае водородная связь вызывает искажение обычной зигзагообразной формы молекулы, что приводит к увеличению соотношения «ширина» : «длина» молекулы и к уменьшению времени удерживания. В пользу этого говорит тот факт, что изомеры 2-алкил-1,3-диолов, у которых водородная связь не имеет такого ориентационного влияния, не разделяются.

^{*} Материалы о конформациях этих соединений и региохимии их получения подготовлены к печати.

Зависимость времени удерживания трео-и эритро-изомеров (2) от темпера-туры анализа на 1-й колонке.

Из зависимости времени удерживания от температуры анализа для соединений I и II на колонке с фазой Н-158 (рисунок) было установлено, что селективность разделения резко увеличивается в переохлажденном состоянии жидкого кристалла.

Чтобы сократить время анализа, некоторые 2,4-диолы переводили в соответствующие триметилсилильные производные. В результате этого времена удержива-

ния значительно уменьшались и при этом наблюдалось некоторое снижение коэффициентов разделения (табл. 3).

Таблица 3

Данные хроматографического разделения триметилсилильных производных некоторых β-диолов на колонке с фазой Н-158

Температура анализа, °С	Соединение	Время удерживания <i>t_R</i> , мин	Коэффициент разделения <i>R</i>
115	II	3,6; 3,9	0,67
130	III VI	8,8; 10,3	1,35

Полученные данные подтверждают предположение о влиянии разветвленности углеводородной цепи и водородной связи на разделение диастереомеров В-диолов.

Выводы

1. Найдена высокоселективная жидкокристаллическая фаза для разделения диастереомеров некоторых β-диолов на насадочной колонке.

2. С увеличением разветвленности углеводородной цепи β-диолов разделение диастереомеров ухудшается.

3. Диастереомеры β-диолов с асимметрическими центрами на соседних углеродных атомах на изученных фазах не разделяются.

4. Предполагается, что внутримолекулярная водородная связь оказывает положительное влияние на разделение диастереомеров 2,4-дио-ЛОВ.

ЛИТЕРАТУРА

1. Шварц Е. М. Экстракционные методы в химии соединений бора. Рига, 1981, 162-163.

Rosin, J. USA pat., 2761 881, 260–635; 4.09. 1956.
 Redlich, H., Schneider, B., Hoffmann, R. H., Gencke, K.-I. Chirale Bausteine aus Kohlenhydraten. VIII. Synthese der vier isomeren 1,3-Dimethyl-2,9-dioxabicyclo-[3,3,1]nonane. — Liebigs Ann. Chem., 1983, N 3, 393–411.

- Dale, J. The reduction of symmetrical 1,2- and 1,3-diketones with sodium borohydride, and the separation of diastereoisomerie 1,2- and 1,3-diols by means of borate complexes. J. Chem. Soc., 1961, N 3, 910—922.
 Feibush, B., Spialter, L. Differential gas-liquid chromatographic behaviour in dia-termination of the separation of the second second
- stereoisomeric systems. I. Symmetrically subsituted dichiral hydrocarbons and ester precursor. J. Chem. Soc. B., 1971, N 1, 106—110. 6. Насыбуллина Р. К., Марьяхин Р. Х., Вигдергауз М. С. О влиянии различных фак-
- торов на газохроматографическое разделение некоторых диастереомеров. Изв. АН СССР. Сер. хим., 1973, № 4, 800—803. Martinet, P., Mousset, G. Separation de quelques a-glycol diastereomères. С. г. Acad. sci. C., 1967, 265, N 11, 599—601.
- 7
- 8. Nurok, D., Taylor, G. C., Stephan, A. M. Separation of diastereoisomers by gas-liquid chromatography: esters of butan-2,3-diol. - J. Chem. Soc. B., 1968, N 3, 291-294.
- 9. Есафов В. И., Марек Э. М. К вопросу об уплотнении альдегидов с кетонами. Уч. зап. Уральск. ун-та, 1969, № 78, 56—60; Тимотеус Х. Р.-Ю. О синтезе 1,3-дио-лов. 1. Синтез 1,3-диолов типа RCH₂CH(OH)CH(R)CH₂OH. Уч. зап. Тартуск. ун-та, 1982, вып. 616, 33—40; Грень А. И., Кузнецов В. В., Вильгин-ская И. И., Степанов Д. Е. 2-Метилпентандиол-2,4. — Реактивы и особо чис-тые вещества, 1978, № 6, 24—26.

- Вигдергауз М. С., Вигалок Р. В., Дмитриева Г. В. Хроматография в системе газ—жидкий кристалл. Успехи химии, 1981, 50, вып. 5, 943—972.
 Уилкинсон С. Дж. Спирты. В кн.: Общая органическая химия, 2. М., 1982, 13—
- 158.

Тартиский госидарственный университет

Поступила в редакцию 8/XII 1986

U. MAEORG, Miia KARRO, H. TIMOTHEUS, Ebba LOODMAA

MONEDE B-DIOOLIDE DIASTEREOMEERIDE GAASIKROMATOGRAAFILINE LAHUTAMINE VEDELKRISTALSETEL FAASIDEL

On uuritud mõnede β-dioolide diastereoisomeeride gaasikromatograafilist lahutamist vedelkristalseid vedelfaase sisaldavates täidiskolonnides. On leitud kõrge selektiivsusega vedelkristalne faas H-158 ja määratud selle lahutusomaduste sõltuvus temperatuurist. Ön näidatud β-dioolide struktuuri mõju diastereomeeride lahutumisele.

U. MÄEORG, Miia KARRO, H. TIMOTHEUS, Ebba LOODMAA

SEPARATION OF DIASTEREOMERS OF SOME β -DIOLS BY GAS-LIQUID CHROMATOGRAPHY USING LIQUID-CRYSTAL PHASES

The GLC separation of some β -diols stereoisomers using liquid crystal phases have been studied. A highly selective liquid crystal phase H-158 was found and its selectivity-temperature relationship established. The influence of the structure of β -diols on the separation of diastereomers has been shown.