1986, 35, 3

УДК 547.514+547.35+547.71+543.544

М. ЛЫХМУС, О. ПАРВЕ, Анне МЮРАУС, Т. КАНГЕР, М. ЛОПП, Ю. ЛИЛЛЕ

ОПРЕДЕЛЕНИЕ ИЗОМЕРНОГО СОСТАВА ПРОДУКТОВ РЕАКЦИИ РАСКРЫТИЯ БИЦИКЛООКСИРАНОВЫХ СИНТОНОВ ПРОСТАНОИДОВ МЕТОДОМ ВЫСОКОЭФФЕКТИВНОЙ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ

Раскрытие эпоксида (1) нуклеофилами (3) [¹] и (4) [^{1, 2}], приводящее к кетондиолам (5) и (6), является универсальным методом получения простагландинов и их аналогов. Недавно нами показано [^{3, 4}], что эпоксид (2), не вступающий во взаимодействие с нуклеофилом (4), легко реагирует с нуклеофилом (3), что позволяет получить интермедиаты карбациклина — ацетиленовые кетондиолы (7) и, после восстановления тройной связи, этиленовые кетондиолы (8) (структурные формулы и продукты синтеза приведены в таблице).

Целью настоящей работы было выявление возможностей разделения методом высокоэффективной жидкостной хроматографии (ВЭЖХ) регио- и стереоизомеров, образующихся при реакции раскрытия эпоксидов (1) и (2), и определение изомерного состава продуктов синтеза, т. е. степени регио- и стереоселективности этой реакции.

Экспериментальная часть

Методика проведения купратного раскрытия эпоксида (1) приведена в [^{1, 2}] и боратного раскрытия эпоксида (2) — в [⁴].

Методика раскрытия эпоксида (1) боратным реагентом (3). К 4,5 г 3(1-тетрагидропиранилокси)окт-1-ина в 25 мл тетрагидрофурана (ТГФ) под аргоном добавляли при —78 °С за 15 мин 13 мл 1,6 N н-бутиллития

3 ENSV TA Toimetised. K 3 1986

в гексане и перемешивали в течение 10 мин. Затем добавляли 2,7 мл (3 г) $BF_3 \cdot (C_2H_5)_2O$ в 5 мл ТГФ, реакционную смесь перемешивали при —78°С в течение 15 мин и добавляли 2,5 г этиленкеталя 3-оксатрицикло[4.2.0.0^{2,4}]октан-7-она (эпоксид (1)). После перемешивания при —78°С в течение 30 мин реакционную смесь гидролизовали 10%-ным раствором NH₄Cl, добавляли этилацетат, органический слой дважды промывали насыщенным раствором NaCl и сушили над Na₂SO₄. После отгонки растворителя сырой продукт фильтровали через силикагель (гексан:этилацетат 1:3) и деблокировали смесью ацетонитрил:вода:2N H₂SO₄ (10:4:1) в течение 20 ч. После нейтрализации, экстракции и отгонки растворителей получили 1,48 г сырого продукта для анализа.

Структурные формулы и коэффициенты емкости на колонках с Зорбаксом ОДС (k'OДС) и Зорбаксом СИЛ (k'СИЛ) исследуемых кетондиолов

Условия хроматографирования: Зорбакс СИЛ, 4,6×150 мм, гексан:изопропанол 90:10, Т 35°С, скорость потока 36 мл/ч; Зорбакс ОДС, 4,6×150 мм, ацетонитрил: вода 30:70, Т 35°С, скорость потока 36 мл/ч.

R	Коэффи- циенты емкости	Синтон *			
		o Jun R R	o - him group	The R R	C HILL HILL OH
М ОН	<i>k</i> ′ОДС <i>k</i> ∕СИЛ	(H5α) 8,5 2,8	(p5α) 7,7 4,1	(H7α) 6,8 6,3	(p7a) 9,6 4,1/4,2
ФН	<i>ҟ′</i> ОДС <i>ҟ</i> ′СИЛ	(H5β) 8,5 2,8	(p5β) 7,7 3,7	(H7β) 6,8 6,0	(p7β) 9,6 4,1/4,2
Сон	<i>к</i> ′ОДС	(н6α) 7,8	(p6α) 8,5	(н8а) 7,0	(p8α) 11,0
- ~~ ОН	<i>к</i> ′ОДС	(н6 β) 7,2	(p6β) 6,5	(н8β) 5,5	(p8β) 8,4

^{*} н — продукт нормального присоединения, приводящий к простаноидам с природным расположением ω-цепи; р — продукт, приводящий к региоизомерам по ω-цепи простаноидов.

Методика превращения ацетиленовых кетондиолов (5) и (7) в этиленовые кетондиолы (6) и (8). 2 мг 2-экзо-(3-гидрокси-окт-1-инил)-3эндо-гидрокси-бицикло[3.3.0]октан-7-она (кетондиола (7)) растворяли в 6 мл бензола, добавляли 50 мкл этиленгликоля и 1 мг n-толуолсульфокислоты и перемешивали при 80 °С в течение 3 ч. К реакционной смеси добавляли одну каплю триэтиламина, сольвент отгоняли. Полученный остаток растворяли в 5,5 мл ТГФ, добавляли 10 мг LiAlH₄ и перемешивали при 70 °С в течение 10 ч. Потом добавляли 1 мл этилацетата и 10%-ный раствор NH₄Cl. Продукт экстрагировали этилацетатом, дважды промывали насыщенным раствором NaCl и сушили над Na₂SO₄. После отгонки растворителя продукт деблокировали смесью ацетонитрил:вода:2N H₂SO₄ (10:4:1) при комнатной температуре в течение 20 ч. После нейтрализации, экстракции и отгонки растворителей получили пробы для анализа.

Хроматографирование. Для измерений использовали жидкостный хроматограф «Du Pont 8845» (США) с двумя детекторами — ультрафиолетовым (при 208—210 нм) и рефрактометрическим (отражающим с 20%-ной точностью весовые соотношения продуктов [⁵]), чтобы полнее выявить из смеси с сильно поглощающими примесями промежуточные соединения синтеза простагландинов, слабо поглощающие в УФобласти.

Из многочисленных элюентов для разделения продуктов синтеза мы выбрали для силикагелевой колонки смесь гексана с изопропанолом, а для обращенно-фазной колонки — смесь воды с ацетонитрилом (структурные формулы и коэффициенты емкости (k') изученных соединений приведены в таблице).

Ацетонитрил и изопропанол перед применением ректифицировали для увеличения УФ-пропускаемости при 208—210 нм. Гексан использовали без очистки. Коэффициенты емкости вычисляли по [⁶].

Обсуждение результатов

Раскрытие эпоксида (1) купратом (4) с тетрагидропиранильной защитой приводит после снятия блокирующих группировок к образованию изомерных кетондиолов (6). Эти соединения хорошо разделяются на колонке с Зорбаксом ОДС. Порядок их элюирования следующий: (рбв), (нбв), (нба) и (рба) (см. таблицу). В данном случае из α-соединений раньше выходит н-изомер (k'ODC < k'ODC), а из β-соединений — р-изомер $(k_{\rm p}^{\prime \rm ODC} < k_{\rm H}^{\prime \rm ODC})$. Соотношение региоизомеров (нб) и (рб) составляет 4:1 [2]. Региоселективность раскрытия эпоксидного цикла «мягкими» основаниями определяется в основном электрофильностью углеродных атомов эпоксида и стерическими факторами [7, 8]. Поскольку в эпоксиде (1) различие химических сдвигов ядер С2 и С3 в спектре ЯМР ¹³С довольно значительно (65,4 и 61,1 м. д. соответственно), возможно существенное различие и в их электрофильности. Стерически оба углеродных атома хорошо доступны для атаки типа S_N2, что, однако, не исключает возможности специфически координационного влияния кислородных атомов в эпоксиде (1) на купрат, что определяет региоселективность присоединения.

Соотношение α- и β-изомеров было 1:1 для обоих региоизомеров, что указывает на полное отсутствие стереоселективности по отношению к гидроксилу у СЗ' в данной реакции. Замена тетрагидропиранильной группы на объемную ахиральную диметил-*трет*-бутилсилильную не влияет на регио- и стереоселективность этой реакции.

В случае раскрытия эпоксида (1) боратным реагентом (3) разделение продуктов на колонке с Зорбаксом ОДС достигнуто лишь для

3*

региоизомеров ацетиленовых кетондиолов (p5) и (н5). Стереоизомеры по гидроксилу у C3' (5 α) и (5 β) не поддаются разделению, как и в случае аналогичных ацетиленовых лактондиолов и простагландинов [^{9, 10}]. Соотношение региоизомеров (н5) и (p5) составляет от 3:2 до 4:2 (рис. 1) в разных экспериментах. Зависимость соотношения этих региоизомеров от условий проведения реакции требует дальнейшего уточнения. Снижение региоселективности при переходе от купратных к боратным реагентам должно быть связано с меньшей избирательностью данного нуклеофила, возможно, за счет координации «жесткой» кислоты Льюиса (BF₃) в ходе реакции с эпоксидным кис-

(H7)

p7)

Рис. 2. Хроматограмма соотношения соединений (н7) и (р7). Подвижная фаза — ацетонитрил: вода 40:60. Остальные условия см. в подписи к рис. 1.

Рис. 1. Хроматограмма соотношения соединений (н5) и (р5). Условия: колонка — Зорбакс ОДС, 4,6×150 мм, подвижная фаза — ацетонитрил: вода 30:70, скорость потока — 36 мл/ч, температура колонки — 35 °С, УФ-детектирование при 208 нм, чувствительность — 0,16 ед. абсорбции по всей шкале, скорость ленты — 10 см/ч. лородом субстрата, снижающей величину разницы в электрофильности реакционных центров [7].

Эпоксид (2), неактивный по отношению к купратному реагенту, легко реагирует с боратом (3) — выход ацетиленовых кетондиолов (7) достигает 78% [4]. Как и в предыдущем случае, из этих соединений разделяются на колонке с Зорбаксом ОДС лишь региоизомеры (н7) и (р7), в то время как (7 α)- и (7 β)-изомеры не делятся (рис. 2). Соотношение региоизомеров (н7) и (р7) составляет 1:1. Отсутствие региоселективности в данном случае не удивительно, если учесть очень маленькое различие в химических сдвигах C2 и C3 (62,0 и 62,4 м.д.

Рис. 3. Хроматограмма разделения соединений (р5α) и (р5β). Условия: колонка — Зорбакс СИЛ, 4,6×150 мм, подвижная фаза — гексан: изопропанол 90:10, скорость потока — 36 мл/ч, температура колонки — 35 °С, детектирование — УФ 210 нм, чувствительность — 0,16 ед. абсорбции по всей шкале, скорость ленты — 10 см/ч. Рис. 4. Хроматограмма разделения соединений (н7а) и (н7β). Условия см. в подписи к рис. 3. соответственно) в эпоксиде (2), свидетельствующее о небольшом различии в электрофильности этих углеродов. Кроме того, снизить селективность этой реакции может и фактор координации эпоксидной функциональной группы с BF₃, как и в боратной реакции с эпоксидом (1). В обоих случаях стерические влияния не должны быть велики, поскольку оба реакционных центра в обоих эпоксидах доступны для атаки типа S_N2.

Важно отметить, что при переходе от кетондиолов (5) к кетопдиолам (7) меняется порядок элюирования н- и р-изомеров на колонке с Зорбаксом ОДС ($k'^{ODC}_{5p} < k'^{ODC}_{5h}$, а $k'^{ODC}_{7p} > k'^{ODC}_{7h}$). Аналогичное изменение порядка элюнрования происходит и при переходе от кетондиолов (6) к кетондиолам (8). Это означает, что по хроматографическому поведению такого рода соединений нельзя судить об их структуре по аналогии, для этого требуется идентификация каждого изомера в отдельности другими методами.

Нами была предпринята попытка разделить α - и β -изомеры кетондиолов (5 α) и (5 β), а также (7 α) и (7 β), хотя имеются данные о хроматографической неразделимости соответствующих ацетиленовых лактондиолов, а также ацетиленовых производных простагландина $F_{2\alpha}$ [^{9, 10}]. Мы нашли, что на колонке с Зорбаксом СИЛ (9700 теоретических тарелок) со смесью гексана с изопропанолом соединения (р5 α) и (р5 β) разделяются полностью (рис. 3), соединения (н7 α) и (н7 β) удовлетворительно (рис. 4), соединения (р7 α) и (р7 β) неудовлетворительно (рис. 5), а соединения (н5 α) и (н5 β) не делятся совсем (см. таблицу).

Для идентификации α- и β-изомеров ацетиленовых кетондиолов (н7) они были препаративно разделены методом ВЭЖХ и каждый из полученных превращен в известные кетондиолы (н8) по следующей схеме:

Аналогично были идентифицированы α - и β -изомеры соединения (p5). Мы нашли, что α - и β -изомеры ацетиленовых кетондиолов элюируют на силикагеле в том же порядке, что и соответствующие изомеры этиленовых кетондиолов. На основе полученных результатов можно сделать вывод, что для биологических испытаний можно получить небольшие количества α - и β -изомеров некоторых ацетиленовых аналогов

карбоциклина путем препаративного разделения на силикагеле их кетондиоловых синтонов.

Чтобы установить степень стереоселективности реакции боратного раскрытия эпоксидов по отношению к гидроксилу у СЗ', смеси α- и β-изомеров ацетиленовых кетондиолов (н5), (р5), (н7) и (р7) были превращены в соответствующие этиленовые кетондиолы (н6), (р6), (н8) И (р8) и определены соотношения α- и β-изомеров в виде легко разделяемых известных этиленовых кетондиолов. Оказалось, что во всех случаях это соотношение было 1:1, что указывает на полностью нестереоселективное по отношению к гидроксилу боратное раскрытие оксиранов (1) и (2) y C3'.

Выводы

1. Раскрытие оксирана этиленового кеталя эпоксибицикло[3.2.0]гептан-6-она боратным реагентом происходит с региоселективностью от 3:2 до 4:2 в пользу изомера присоединения по C2. По отношению к гидроксильной группе в цепи у C3' эта реакция нестереоселективна.

2. Раскрытие оксирана этиленового кеталя эпоксибицикло[3.3.0]октан-7-она боратным реагентом протекает без регио- и стереоселективности.

3. На колонке с Зорбаксом ОДС (элюент — ацетонитрил:вода) хорошо разделяются регионзомеры (н- и р-изомеры) раскрытых оксиранов (1) и (2), а также стереоизомеры (α- и β-изомеры) этиленовых кетондиолов (6) и (8). α- и β-изомеры соответствующих ацетиленовых кетондиолов (5) и (7) на обращенно-фазной

Рис. 5. Хроматограмма разделения соединений (р7α) и (р7β). Чувствительность рефрактометра (РИ) — 0,05 ед. преломления по всей шкале. Остальные условия см. в подписи к рис. 3.

колонке не разделяются. Впервые удалось разделить некоторые а- и β-изомеры ацетиленовых кетондиолов (5) и (7) на силикагелевой колонке (элюент — гексан: изопропанол).

4. Региоселективность раскрытия оксирана этиленового кеталя эпоксибицикло[3.2.0]гептан-6-она при переходе от купратных реагентов к боратным уменьшается, причины этого явления требуют дальнейшего изучения.

ЛИТЕРАТУРА

- 1. Newton, R. F., Roberts, S. M. Steric control in prostaglandin synthesis involving,
- bicyclic and tricyclic intermediates. Теtrahedron, 1980, 36, N 15, 2163—2196.
 2. Парве О., Пальс А., Лыхмус М., Вялимяэ Т., Лопп М., Лилле Ю. Синтез простагландинов F и I ряда. 1. Синтез (±)простагландина F_{2a} и (±)9-дезоксин-Δ⁵-6,9α-циклопростагландина F₁. — Изв. АН ЭССР. Хим., 1985, 34, № 4.. 276 - 284.
- Lopp, M., Parve, O., Löhmus, M., Müraus, A., Pals, A., Välimäe, T., Lille, Ø. Synthesis of prostanoids via alkynyl borate oxirane opening. In: Abstroif Papers. Fourth Europ. Symp. on Organic Chem. Aix-en-Provence (France), 1985, OC-29.
- Парве О., Пальс А., Лыхмус М., Вялимяэ Т., Лахе Л., Лопп М., Лилле Ю. Син-тез простагландинов F и I ряда. 2. Синтез (±)13,14-дидегидро-6,9α-метано-простагландина I₂ через этиленовый кеталь 2,3-эндо-эпоксибицикло[3.3.0]-октан-7-она. Изв. АН ЭССР. Хим., 1985, 34, № 4, 285—291.
 Сахартова О. В., Шатц В. Д. Усредненный калибровочный коэффициент рефрак-тометлического детоктора при высокладивной малистрование и рефрак-тометлического детоктора и вы высокрасной коэффициент рефрак-
- тометрического детектора при высокоэффективной жидкостной хроматографии смесей кислородсодержащих соединений. — Ж. анал. хим., 1984, XXXIX, № 10, 1901-1904.
- Snyder, L. R., Kirkland, J. J. Introduction to Modern Liquid Chromatography. 2nd ed. New York Chichester, et al., 1979, 22—43.
 Kayser, M. M., Morand, P. An analysis of the factors contributing to the regio-selectivity observed in the opening of oxiranes. Can. J. Chem., 1980, 58, 2000 Control of Con 302-306.

- 302-306.
 Ali, S. M., Crossland, N. M., Lee, T. V., Roberts, S. M., Newton, R. F. Some stereocontrolled reactions of bicyclo[3.2.0]heptan-6-ones and 2-oxabicyclo[3.3.0]-octan-3-ones. J. Chem. Soc. Perkin Trans. I, 1979, N 1, 122-125.
 O-Yang, C., Fried, J. Separation of acetylenic prostaglandin isomers as cobalt complexes. Tetrahedron Lett., 1983, 24, N 25, 2533-2536.
 O-Yang, C., Kertesz, D. J., Kluge, A. P., Kuenzler, P., Li, T., Marx, M. M., Bruno, J. J., Chang, L. Synthesis and platelet aggregation inhibition activity of a series of enantiomeric bicyclo[3.2.0]heptane-6-oximinoacetic acids. Prostaglandins, 1984, 27, N 6, 851-863.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 10/I 1986

M. LOHMUS, O. PARVE, Anne MÜRAUS, T. KANGER, M. LOPP, U. LILLE

PROSTANOIDIDE BITSÜKLOOKSIRAANSETE SÜNTONITE AVAMIS-REAKTSIOONI PRODUKTIDE ISOMEERSE KOOSTISE MÄÄRAMINE KÖRGEFEKTIIVSEL VEDELIKKROMATOGRAAFILISEL MEETODIL

On leitud, et epoksübitsüklo[3.2.0]heptaan-6-ooni etüleenketaali oksiraani avamine boraatreagendiga toimub regioselektiivsusega 3:2 kuni 4:2 2-asendatud liitumisprodukti kasuks. Antud reaktsioon ei olnud stereoselektiivne 3'-asendis hüdroksüülrühma sisal-davate kõrvalahelate liitumise suhtes. Tehti kindlaks, et epoksiidi avamisel boraat-reagendiga toimub regioselektiivsuse vähenemine, võrreldes tema avamisega kupraat-reagendiga, ja et epoksübitsüklo[3.3.0]oktaan-7-ooni etüleenketaali oksiraani avamisel sama boraatreagendiga puudub nii regio- kui ka stereoselektiivsus.

M. LOHMUS, O. PARVE, Anne MURAUS, T. KANGER, M. LOPP, U. LILLE

DETERMINATION OF IZOMERIZATION OF PRODUCTS FORMED IN THE OPENING REACTION OF PROSTANOID **BICYCLO-OXIRANE SYNTHONS BY HPLC**

It was ascertained that the oxirane opening of ethylene ketale of epoxybicyclo[3.2.0]-heptane-6-one proceeds with a regioselectivity of 3:2 to 4:2 for a 2-substituted addition product. This reaction is not stereoselective in terms of addition of the side chains containing hydroxylic groups in the 3'-position. It was established that stereoselectivity is reduced by the opening of the given epoxide with a borate reagent, as compared

with the opening with a cuprate reagent. The oxirane opening of ethylene ketale of epoxybicyclo[3.3.0]-octane-7-one with the same borate reagent was found to lack both regioselectivity and stereoselectivity.