EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. KEEMIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ХИМИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. CHEMISTRY

1985, 34, 3

https://doi.org/10.3176/chem.1985.3.02

УДК 661.632.12

Э. ААСАМЯЭ, М. ВЕЙДЕРМА

ПОЛУЧЕНИЕ НИТРОФОСКИ ИЗ РАКВЕРЕСКИХ ФОСФОРИТОВ АЗОТНОКИСЛОТНО-СУЛЬФАТНЫМ СПОСОБОМ

Ранее нами изучены начальные стадии азотнокислотно-сульфатной переработки раквереских фосфоритов: 1) разложение флотационных концентратов фосфорита азотной кислотой в смеси с серной кислотой и (или) сульфатом аммония, 2) фильтрование реакционной пульпы с получением продукционного раствора и фосфогипса [^{1, 2}]. В настоящей работе исследована переработка продукционного раствора в твердое NPK-удобрение — нитрофоску *.

Таблица 1

Показатели	Р->> Номер образца - Р М						
	1 🤘	2 🗸	3	4 K	5 k	6 A	7
Тип фосфорита	п	ФМ	ФМ	Ч	ФМ	П	П
Содержание, %: Р ₂ О ₅	27,8	27,3	24,4	28,1	. 26,1	29,5	. 28,8
нерастворимого остатка	9,3	5,7	10,5	8,5	10,0	8,6	14,5
Соотношение, %: СаО:Р ₂ О ₅	155	168	172	161	170	153	143
MgO:P ₂ O ₅	(7,9)	13,9	16,4	7,1	14,9	5,1	3,5
<u>общая Fe₂O₃.</u> P ₂ O ₅	11,5	6,6	8,2	6,6	5,6	7,0	9,9
<u>пиритная Fe₂O₃</u> P ₂ O ₅	6,8	0,4	2,1	3,2	0,4	5,6	8,6
непиритная Fe ₂ O ₃ P ₂ O ₅	4,7	6,2	6,1	3,4	5,2	1,4	1,3
CO2: P2O2	24,1	38,8	42,2	29,2	39,5	22,0	11,8
F:P ₂ O ₅	9,7	9,2	10,2	8,2	8,8	8,8	9,5

Характеристика исходных проб фосфоритного концентрата

Сокращения для типов фосфорита: П — пиритовый, ФМ — ферроидно-магнезиальный, Ч — чистый (здесь и в табл. 2, 3).

Исходные фосфоритные концентраты (табл. 1) из Раквереского (образцы 1—6) и Маардуского (образец 7) месторождений относятся

* В исследованиях принимали участие Э. Арумеэл; Л. Поска, М. Эйнард и В. Саар.

165

по значению модулей примесей, т. е. по отношению оксидов магния и железа к P₂O₅, к трем разновидностям фосфоритов ЭССР [³]: к ферроидно-магнезиальной (2, 3 и 5), чистой (4) и пиритовой (1, 6 и 7).

Методика исследования

Продукционный раствор комнатной температуры в количестве 60— 150 г помещали в реактор-аммонизатор, снабженный пропеллерной мешалкой и кольцеобразной дырчатой трубкой, через которую подавали аммиак со скоростью 0,3 г/мин в течение 7—15 мин. Аммонизацию фильтратов, полученных из пиритовой и чистой разновидностей, прекращали по достижении рН пульпы 4,5—5,5, а полученных из магнезиальных образцов — при рН пульпы 6—6,5. К концу аммонизации пульпа нагревалась до 55—63 °С, после чего ее выпаривали на водяной бане до загустения, добавляли тонкоизмельченный хлористый калий в таком количестве, чтобы соотношение $K_2O:P_2O_5$ составляло 1:1, и смесь высушивали, постоянно перемешивая, при 90—100°.

При анализе продукционного раствора и проб нитрофоски использовали в основном методы, изложенные в [⁴]. Содержание магния определяли атомно-абсорбционным методом [⁵].

Результаты экспериментов

І вариант опытов (азотно-сернокислотно-сульфатный). Продукционный раствор, содержащий 6,1-8,2% P_2O_5 , был получен разложением фосфорита смесью HNO₃, H_2SO_4 и (NH₄)₂SO₄ (по 50% от стехиометрической нормы). Главными компонентами этого раствора были фосфорная кислота и нитрат аммония, основными примесями — соединения магния, железа и фтора. Переработка раствора в твердый продукт протекала без технологических затруднений. Полученные образцы нитрофоски (табл. 2) состояли в основном из частиц размером 0,5—2 мм и содержали 18,1—18,6% водорастворимого азота (62—66% в аммиачной форме и остальную часть в нитратной). Наличие карбамида^{**} в количестве 0,4 и 0,2% установлено лишь в пробах, полученных из фосфоритов 1 и 7 соответственно.

Общей Р₂О₅ в пробах нитрофоски содержалось 14,4—15,5%, основная ее часть (88—96%) находилась в водорастворимой форме. Отношение общей Р₂О₅ к азоту составляло 77—86%. Содержание Р₂О₅ можно повысить, снизив количество азотной кислоты и эквивалентно увеличив долю серной кислоты на разложение фосфорита.

Суммарное содержание питательных веществ в нитрофоске составляло 47,4—50.1%, из примесей установлено 0,35—0,62% Fe₂O₃ и 0,30—2,2% MgO, что отвечает переходу общего железа и магния из фосфоритов в нитрофоску на 20—44 и 80—90% соответственно.

Лучшие образцы нитрофоски из эстонского фосфорита по содержанию питательных веществ сравнимы с продуктом, полученным указанным способом из ковдорского апатита на опытной установке и лишь немного уступают нитрофоске из хибинского апатита [^{6, 7}].

^{**} Карбамид был введен в процесс на стадни перемешивания реагентов в пульпе для снижения выделения оксидов азота.

Получение нитрофоски разложением фосфорита смесью HNO₃+H₂SO₄+(NH₄)₂SO₄

Показатали	Р — Образец фосфорита — М						
. 110казатсян	1	2	3	4	5	6	7
Тип фосфорита	П	ФМ	ФМ	Ч	ФМ	П	П
Извлечение Р ₂ О ₅ в продук- ционный раствор, %	95	90	92	88	90	96	88
Количество карбамида на 1000 г фосфорита, г	20	5	5	10	10	27	20
Содержание Р ₂ О ₅ в продук- ционном растворе, %	6,8	6,7	6,1	6,2	6,1	8,2	6,9
рН аммонизации	6,5	6,5	6,5	5,5	6	4,5	5,5
Содержание в нитрофоске, %:				100,00	State of the	1.252	A IN
общей Р ₂ О ₅ усвояемой Р ₂ О ₅	15,5	14,7 14,2	14,4 14,3	14,6 13,4	14,7 14,5	15,5 14,6	15,4 15,3
водорастворимой Р ₂ О ₅	14,1	14,0	13,0	12,9	13,4	14,4	14,8
(N)	18,1	18,6	18,6	18,5	18,4	18,2	18,1
в том числе аммиачного нитратного Қ ₂ О	11,3 6,8 15,7	11,9 6,7 15,5	11,8 6,8 15,2	11.9 6,6 14,7	11,7 6,7 14,3	11,3 6,9 16,4	11,9 6,2 16,5
питательных веществ (P ₂ O ₅ +N+K ₂ O) Fe ₂ O ₃ MgO	49,3 0,62 1,35	48,8 0,35 1,80	48,2 0,36 2,19	47,8 0,47 0,96	47,4 0,39 2,09	50,1 0,48 0,72	50,0 0,36 0,30
Отношение в нитрофоске, %:		1		1993	(generation)	-	1983
$\begin{array}{l}(\text{ycb.}P_2O_5):(\text{обш.}P_2O_5)\\(\text{вод.}P_2O_5):(\text{обш.}P_2O_5)\\(\text{обш.}P_2O_5):(\text{N})\end{array}$	98 91 86	97 95 79	99 90 77	92 88 79	98 91 80	94 93 85	99 96 85

II вариант опытов (азотнокислотно-сульфатный). Продукционный раствор, полученный разложением фосфорита смесью HNO₃ и (NH₄)₂SO₄ (по 100% от стехиометрической нормы), содержал 6,0-6,7% P₂O₅. Готовые образцы нитрофоски в сумме содержали 44,2-45,5% питательных веществ, в том числе 22,7-24,0% N, 10,2-11,0% P₂O₅ и 10,5-12,0% K₂O (табл. 3). Из водорастворимого азота 55-60% находилось в аммиачной форме, а из общей P₂O₅ 88-92% в водорастворимой форме. Отношение P₂O₅ к азоту равнялось 43-48%. Переход Fe₂O₃ и MgO из фосфорита в нитрофоску составлял 30-80 и 80-100% соответственно.

Таким образом, результаты исследования трех разновидностей фосфоритного концентрата из Раквереского и Маардуского месторождений показали, что в полученной из них нитрофоске содержится до 50% питательных веществ. Учитывая показатели всех стадий процесса, а также пригодность пиритовой и чистой разновидностей фосфорита для производства двойного суперфосфата и аммофоса, наиболее перспективным сырьем для получения <u>нитрофоски</u> можно считать ферроидномагнезиальный фосфорит участка Кабала. При разложении этого типа фосфорита смесью $HNO_3 + H_2SO_4 + (NH_4)_2SO_4$ в готовый продукт переходит не менее 90% P_2O_5 , отношение водорастворимой P_2O_5 к общей составляет 89—98%, суммарное содержание питательных веществ до-

Тиблица 3

Получение	нитрофоски	разложением	фосфорита
	смесью НМ	$O_3 + (NH_4)_2 SO_4$	1998 (49)

Показатели	Образец фосфорита					
Tiokasartain	2	3	4	5	6.	
Тип фосфорита	ФМ	ФМ	Ч	ФМ	П	
Извлечение Р ₂ О ₅ в продукционный раствор, %	92	89	90	92	93	
Количество карбамида на 1000 г фосфорита, г	5	5	10	5	40	
Содержание P_2O_5 в продукционном растворе, %	6,7	6,2	6,0	6,4	6,0	
рН аммонизации	6,5	6,5	5,5	6	5,5	
Содержание в нитрофоске, %: общей P ₂ O ₅ усвояемой P ₂ O ₅ водорастворимой P ₂ O ₅ водорастворимой P ₂ O ₅ водорастворимого азота (N)	10,8 10,4 9,8 22,7	10,2 9,9 9,0 24,0	10,5 10,2 9,7 22,9	$10,5 \\ 10,3 \\ 9,3 \\ 24,0$	11,0 10,6 9,8 22,7	
аммначного нитратного К ₂ О	13,1 9,6 12,0	13,3 10,7 11,1	13,3 9,6 11,1	13,3 10,7 10,7	13,5 9,2 10,5	
$(P_2O_5+N+K_2O)$ Fe_2O_3 MgO	45,5 0,31 1,47	45,3 0,36 1,85	44,5 0,44 0,71	45,2 0,18 1,60	44,2 0,65 0,58	
Отношение в нитрофоске, %: (усв. P_2O_5): (общ. P_2O_5) (вод. P_2O_5): (общ. P_2O_5) (общ. P_2O_5): (N)	96 90 48	97 88 43	97 92 46	98 89 44	96 89 48	

стигает 47% и соотношение P2O5 и азота равняется приблизительно 0,8:1. Сложное удобрение такого состава входит в ассортимент рекомендуемых туков [8]. Разложение фосфорита смесью HNO₃+ (NH₄)₂SO₄ в пропорции, диктуемой условиями данного процесса (полная конверсия фосфогипса с рециркуляцией всего раствора (NH₄)₂SO₄ в стадию разложения), позволит получить продукт с отношением P2O5 к N не более 50%.

ЛИТЕРАТУРА

- 1. Аасамяэ Э., Вейдерма М. Влияние добавки карбамида на азотнокислотно-суль-фатную переработку природных фосфатов. Изв. АН ЭССР. Хим., 1983, 32,
- № 1, 1—7.
 Аасамяэ Э., Вейдерма М. Азотнокислотно-сульфатная переработка фосфоритов Раквереского месторождения. Изв. АН ЭССР. Хим., 1984, 33, № 2, 73—78.
 Аасамяэ Э., Вейдерма М. Оценка эстонских фосфоритных концентратов как сырья для кислотной переработки. Изв. АН ЭССР. Хим., 1983, 32, № 4, 242—245.
- 4. Методы анализа фосфатного сырья, фосфорных и комплексных удобрений, кормовых фосфатов. М., 1975.
- McBride, C. H. Determination of secondary and minor plant nutrients in fertilizers by atomic absorption. Spectrophotometry: third collaborative study. J. Assoc. Offic. Anal. Chem., 1967, 50, N 2, 401-407.

- Абашкина Т. Ф., Шмульян Е. К., Одерберг А. С., Отрешко В. М., Товстюк Л. М., Лифшиц М. С. Разработка способа получения высококонцентрированных во-дорастворимых удобрений способом азотно-сернокислотного разложения апа-тита. Тр. НИУИФа, вып. 221. М., 1973, 121—127.
 Абашкина Т. Ф., Шмульян Е. К., Дорошина Т. В., Жолудев А. А., Ковтун А. А., Ламза Е. Н., Лифшиц М. С. Исследование процесса получения нитроаммо-фоски из ковдорского апатитового концентрата. Тр. НИУИФа, вып. 234. М., 1979, 3—11.
- Справочная книга по химизации сельского хозяйства. Под ред. В. М. Борисова. 8. M., 1969.

Таллинский политехнический институт

Поступила в редакцию 12/XII 1984

E. AASAMÄE, M. VEIDERMA

NITROFOSKA SAAMINE RAKVERE FOSFORIIDI LÄMMASTIKHAPPELIS-SULFAATSEL LAGUNDAMISEL

Artiklis on kirjeldatud nitrofoska valmistamist lahustest, mis saadi kuue Rakvere ja ühe Maardu fosforiidi flotatsioonkontsentraadi proovi lämmastikhappelis-sulfaatse lagun-damisega. Valmistatud kaht sorti väetiseproovides oli lämmastiku ja P_2O_5 massi suhe 1:0,8 ja 1:0,45 ning toimeainete (N+P_2O_5+K_2O) üldsisaldus 44—50%. Nitrofoska üld-fosforist üle 88% oli vees lahustuv.

E. AASAMÄE, M. VEIDERMA

OBTAINING NITROPHOSKA FROM RAKVERE PHOSPHORITE BY NITRIC ACID-SULPHATE TREATMENT

Obtaining nitrophoska by two various methods, using the Estonian phosphorite concentrates from the Rakvere and Maardu deposits, has been studied. Phosphorite was decomposed with the help of a mixture of reagents: 1) $HNO_3 + H_2SO_4 + (NH_4)_2SO_4$ or 2) $HNO_3 + (NH_4)SO_4$. Phosphogypsum was separated, the filtrate was evaporated and neutralized with NH₃. After adding KCl, the slurry was dried. The obtained NPK-fertilizer contained 44-50% $N+P_2O_5+K_2O$ and had a weight ratio $N:P_2O_5$ 1:0.8 or 1:0.45. Over 88% of the phosphorus obtained was in a water-soluble form.