EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. KEEMIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ХИМИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. CHEMISTRY

1984, 33, 3 .

УДК 661.185

Х. КИИК, Сальме ЛАЙСААР

ДЛИННОЦЕПОЧЕЧНЫЕ АЛКИЛ-N-(СУЛЬФОФЕНИЛ)-АМИНОАЦЕТАТЫ

H. KIIK, Salme LAISAAR. PIKA AHELAGA ALKUUL-N-(SULFOFENUUL)-AMINOETANAADID H. KIIK, Salme LAISAAR. LONG CHAIN ALKYL-N-(SULFOPHENYL)-AMINOACETATES

(Представил О. Эйзен)

Путем конденсации длинноцепочечных эфиров галоидуксусных кислот с алифатическими аминоалкансульфокислотами (таурином, метилтаурином) получаются поверхностно-активные вещества (ПАВ) типа несбалансированных амфолитов — алкил-N- (сульфоалкил) - аминоацетаты [¹]. Представляло интерес изучить, во-первых, ход этого синтеза с ароматическими аминосульфокислотами и, во-вторых, свойства получаемых ПАВ со значительно ослабленной аминогруппой. Ранее подобный синтез (сульфаниловая кислота, эфиры из спиртов кокосового масла и хлоруксусной кислоты, водная среда, турбинная мешалка) был проведен в [²], однако у нас отсутствуют данные о выходах и свойствах полученных продуктов.

Синтез с использованием вторичных хлор- и бромацетатов и сульфаниловой кислоты проводили в 70—80%-ном спирте при соотношении эфир:сульфаниловая кислота 1:2 (ROOCCH₂Hal+2H₂N C₆H₄SO₃Na → → ROOCCH₂NHC₆H₄SO₃Na+H₂NC₆H₄SO₃H+NaHal) и при концентрации последней 0,7—1,0 моль/л. Как и можно было ожидать, для завершения реакции потребовалось значительно больше времени: в случае эфиров бромуксусной кислоты от 3 до 7 ч, хлоруксусной — от 40 до 80 ч (при использовании таурина 0,5—1 и 5—8 ч соответственно). Продукты, данные анализа которых приведены в табл. 1, были выделены в основном так же, как описано в [¹]. Выходы 55—75%. В табл. 2 приведены их некоторые поверхностно-активные свойства.

Таблица 1

R в NaO3SC6H4NHCH2COOR	N		с		Н		Количество щелочи для омыления 1 г вещества, мг-экв.	
	опр.	теор.	опр.	теор.	опр.	теор.	опр.	теор.
вторС ₁₀ H ₂₁ вторС ₁₁ H ₂₃ вторС ₁₂ H ₂₅	3,40 3,16 3,30	3,57 3,44 3,33	54,5 54,8 56,7	55,0 56,2 57,1	7,30 7,44 7,70	7,54 7,38 7,60	2,52 2,53 2,54	2,52 2,46 2,38

Данные анализа алкил-N-(сульфофенил)-аминоацетатов

Таблица 2

NaO3SC6H4NHCH2COOR	Критическая концентра- ция мицел- лообразова- ния (ККМ), ммоль/л	Поверхност- ное натяже- ние при КҚМ, Н/м ⁻³	
$ \begin{array}{l} R = {}_{BTOP.} & -C_{10}H_{21} \\ R = {}_{BTOP.} & -C_{11}H_{23} \\ R = {}_{BTOP.} & -C_{12}H_{25} \end{array} $	4,1 2,3 1,4	25 25 28	

Свойства алкил-N-(сульфофенил)-аминоацетатов

Интересны т. н. амфотерные свойства продуктов. При подкислении их водных растворов эквивалентным количеством кислоты они, как и натриевые (и другие) соли алкил-N-(сульфоалкил)-аминоацетатов и других ПАВ данного типа, например N-алкилтауринатов, переходят в форму малорастворимой внутренней соли. Разница по сравнению с упомянутыми ПАВ только в том, что этот переход происходит не мгновенно, как у них, а с определенной скоростью (при комнатной температуре и концентрации 0,2—0,25 моль/л в течение 0,25—0,5 ч). У близких по структуре веществ с амидной группой внутренняя соль уже не образуется. Константы основностей этиламина 5,6 · 10⁻⁴, анилина 4,6 · 10⁻¹⁰, ацетамида 2,5—3,8 · 10⁻¹⁵; хотя эти величины не совпадают с основностями азота в указанных ПАВ, они все же дают представление о влиянии упомянутого параметра на образование внутренней соли. Помимо сильно различающихся основностей, в неодинаковом поведении упомянутых ПАВ могут играть роль и другие факторы.

Поверхностно-активные свойства полученных препаратов соответствовали ожидаемым.

ЛИТЕРАТУРА

- 1. Иоонсон Р., Киик Х. Синтез и свойства алкил-№-(сульфоэтил)- и -№-(карбоксиметил)-аминоацетатов. 2. Моноацетаты. — Изв. АН ЭССР. Хим., 1979, 28, № 3, 161—166.
- 2. Geigy, J. R. Schw. P. 163 002 (1933). Chem. Zbl., 1934, 1, 2198.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 29/XI 1983