EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 32. KÕIDE KEEMIA, 1983, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 32 ХИМИЯ. 1983, № 3

https://doi.org/10.3176/chem.1983.3.08

УДК 662.736:66.094.36

Линда ПОБУЛЬ, И. КЛЕСМЕНТ, Я. АРРО

ИССЛЕДОВАНИЕ ТЯЖЕЛОЙ СМОЛЫ ПОЛУКОКСОВАНИЯ СЛАНЦА-КУКЕРСИТА

2. ОКИСЛЕНИЕ ПЕРМАНГАНАТОМ КАЛИЯ

Окисление является одним из основных методов исследования макромолекулярных структур и соединений с высокой температурой кипения. Этот метод нашел применение и при анализе тяжелой сланцевой смолы. А. Д. Кокурин с сотрудниками [¹⁻³] нашли, что при обработке сланцевой смолы перманганатом калия в щелочной среде наряду с двуокисью углерода образуются алифатические моно- и дикарбоновые кислоты, а также ароматические ди- и трикарбоновые соединения. Поскольку указанные выше работы проводились без применения хроматографических методов, то при анализе продуктов окисления удавалась лишь качественная идентификация некоторых карбоновых кислот. Такого рода исследования следует продолжить, но только с применением уже современных методов анализа.

Экспериментальная часть

Гетерогенное окисление тяжелой сланцевой смолы, более подробно описанное в [4], проводили в 1%-ном водном растворе щелочи при температурах 30±5° и 95±2°С. Для каждого опыта брали примерно 4 г смолы и готовили из нее водную эмульсию. К последней прибавляли, по порциям, перманганат калия по мере израсходования предыдущей добавки. Добавление реагента прекращали, если время реагирования 1 г перманганата калия длилось более 8 ч.

Образующиеся органические кислоты экстрагировали из подкисленной среды гексаном и диэтиловым эфиром. Оставшийся раствор упаривали досуха, остаток повторно обрабатывали в аппарате Сокслета сначала этиловым эфиром и затем ацетоном.

Органические кислоты или их эфиры анализировали газохроматографически на приборе «Хром-4» с пламенно-ионизационным детектором на трех колонках из нержавеющей стали:

I колонка 0,3×100 см была заполнена хезасорбом AW крупностью 0,100—0,125 мм, пропитанным 1,6% LAC2-R-446, скорость повышения температуры 4°/мин;

II колонка 0,3×100 см, инертон AW-HMDS, 0,125—0,160 мм, 1,2% апиезон L + 0,3 дистеарат ПЭГ, 4°/мин;

III колонка 0,3×520 см, инертон AW-HMDS, 0,20—0,25 мм, 4% Е 301, 5°/мин.

Для количественного анализа органических кислот в качестве внутреннего стандарта применяли нафтилуксусную кислоту. Калибровочные коэффициенты для перевода высот хроматографических пиков в весовые проценты идентифицированных ароматических кислот определяли из хроматограмм эталонных смесей (табл. 1).

Название кислот	Калибро- вочный коэффи- циент	Оксидат при 30°	Оксидат при 95°
Нафтилуксусная Бензойная Фенилуксусная Ортофталевая (1,2) Терефталевая (1,4) Гемимеллитовая (1,2,3) Тримеллитовая (1,2,4) Меллофановая (1,2,3,4) Пиромеллитовая (1,2,3,5) Бензолпентакарбоновая Меллитовая	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \\ 0,6 \\ 0 \\ 28,4 \\ 3,9 \\ 19,2 \\ 25,9 \\ 5,1 \\ 6,4 \\ 4,5 \\ 2,9 \\ 3,1 \\ \end{array}$	$\begin{array}{c c} \\ 1,6 \\ 1,3 \\ 17,3 \\ 3,2 \\ 15,2 \\ 22,8 \\ 8,2 \\ 11,7 \\ 8,0 \\ 5,1 \\ 5,6 \\ \end{array}$
	Bcero:	100.0	100,0

Состав ароматических кислот в оксидате тяжелой сланцевой смолы, вес. %

Таблица 2

Результаты окисления тяжелой сланцевой смолы

Экстрагент	Выход кислот при 30°, %		Выход кислот при 95°, %	
	на угле- род	на кис- лоты	на угле- род	на кис- лоты
Гексан Диэтиловый эфир Ацетон	5,8 43,6 1,7	6,8 88,7 4,5	0,2 16,6 5,7	0,4 81,0 18,6
Итого:	51,1	100,0	22,5	100,0

Результаты и обсуждение

Окисление тяжелой сланцевой смолы при 30° давало вдвое больший выход кислот, чем при 95° (табл. 2). Из хроматограмм (рис. 1) сле-дует, что в оксидате, полученном при 95°, превалируют ароматические кислоты. Количественно были идентифицированы многие из алифатических монокарбоновых кислот (АМК), алифатических дикарбоновых кислот (АДК) и ароматических карбоновых кислот (АКК). При экстракции гексаном АМК и частично АДК переходят в органическую фазу. Основная масса АКК содержится в эфирном и ацетоновом экстрактах, которые анализировали вместе. В суммарном оксидате тяжелой смолы, полученном при 30°, доля АМК (C₂—C₁₉) в выделенных кислотах составляет 5, АДК (C₄—C₁₇) — 21 и АКК — 17%, а в - 17%, а в оксидате, полученном при 95°, АДК (С4-С7) - 4 и АКК - 30% и АМК не обнаружено. Как и при окислении керогена, основными продуктами окисления тяжелой сланцевой смолы являются АДК С4-С8. Исходным веществом для первых членов указанного ряда могут быть циклогексановые структуры, а для C7 и C8 должен быть другой источник образования: макроциклы, длинные углеродные цепи с функциональными группами (в том числе с двойными связями) и разветвлениями. Кислоты C4-C8 могут образовываться также при окислительной деструкции более длинных цепей, которые в этом случае расщеп-

Рис. 1. Хроматограммы продуктов окисления тяжелой сланцевой смолы при 30 (а) и 95 °С (б), полученных на III колонке; кислоты в виде сложных эфиров. Цифры — число атомов углерода в алифатических дикарбоновых кислотах.

ляются преимущественно по середине. В исходных структурах и механизме образования алифатических дикарбоновых кислот еще много неясного; в данном случае можно лишь констатировать, что источник их образования при окислении керогена и тяжелой смолы одинаков (рис. 2).

Интересен состав малочисленных монокарбоновых жирных кислот (рис. 2). Присутствуют кислоты C₅—C₁₈; при этом как в биологической продукции, так и в большинстве геолипидов превалируют C₁₆ и C₁₈. Указанные соединения преобладают и в кислотах битумоида кукер-

сита (а также С22 и С24) [5], но из-за ничтожного количества битумоида в кукерсите их нельзя рассматривать в качестве источника монокарбоновых кислот оксидата.

При мягком окислении керогена кукерсита азотной кислотой [6] и озоном [7] также образуется небольшое количество кислот, подобных монокарбоновым и описанным в настоящей работе. Кислоты эти имеют более длинную углеродную цепь и образуются, по-видимому, ИЗ ОДИНАКОВЫХ СТРУКТУРНЫХ ЭЛЕМЕНТОВ, НО НЕ ИЗ СКРЫТЫХ, ТРУДНОдоступных сложных эфиров соответствующих кислот, так как при омылении кукерсита в весьма жестких условиях (200°) образуется только 0,9% кислот в основном состава C5-C7 [8].

В [9] по данным термической деструкции тяжелой смолы предположено, что часть молекул смолы содержит длинные углеродные цепи преимущественно с нечетными числами атомов углерода (С15 и С17), связанными с ароматическими или с циклогексановыми структурами. В случае окисления предполагаемых ароматических структур происходит β-расщепление с образованием кислот C₁₄ и C₁₆, тогда как кислота С₁₈ — основная составляющая нашего оксидата — в данных условиях образоваться не может. Другое дело, если цепи С15 и С17 связаны с циклогексановыми или с менее прочными структурами. В [10] предполагается, что в структуре кукерсита присутствуют следующие фрагменты, из которых при пиролизе образуются 5-алкилрезорцины:

та (3);

вые и 2, 3

1

кислоты.

При окислении указанного фрагмента происходит, вероятно, образование пероксидной группы у четвертичного углеродного атома и разрушение цикла, так как он ослаблен функциональными группами. В результате последовательных реакций образуется кислота С₁₈. Возможно, подобным путем проходит и окислительная деструкция 5-алкилрезорцинов.

Продукты окисления тяжелой смолы содержат значительные количества не образующихся при окислении керогена бензолкарбоновых кислот (табл. 1). Достоверно известно, что при ароматизации в условиях пиролиза углерод-углеродные связи не изомеризуются, поэтому состав ароматических кислот может дать нам сведения о циклогексановых структурах в керогене. Состав бензолкарбоновых кислот характеризуется высокой концентрацией определенных изомеров, а именно наличием карбоксильных групп в положениях 1,2 и 1,2,4. Следует отметить, что указанные изомеры являются основными продуктами окисления и других каустобиолитов [11], в то время как 1,2- и 1,2,4замещенные бензольные и циклогексановые структуры преобладают в незрелых нефтях и смолах полукоксования малопревращенных сапропелитов. По нашему мнению [12], указанные структуры образуются при фоссилизации полиненасыщенных жирных кислот: 1,2-замещенные при мономолекулярной циклизации, а 1,2,4-замещенные — при конденсации по Дильс-Альдеру. В результате последней реакции образуется цикл из диена и α,β-ненасыщенной кислоты; после декарбоксилирования остается 1,2,4-замещенный цикл. Конечно, 1,2-бензолдикарбоновые кислоты образуются и при окислении линейно конденсированных ароматических структур (нафталина, антрацена), которые, в свою очередь, могут быть продуктами циклизации прямолинейных цепей.

Результаты настоящей работы показывают, что в тяжелой смоле присутствуют структурные элементы, характерные для исходного керогена, тогда как вопрос о наличии циклических дикарбонильных структур в смоле остается открытым.

Следует еще отметить, что установленные структуры составляют небольшую долю тяжелой смолы, при окислении образуется много СО2 и сложных соединений. Поэтому работу в этом направлении следует продолжить с более узкими структурными группами, выбирая для каждой из них подходящие условия окисления.

ЛИТЕРАТУРА

- 1. Кокурин А. Д., Галуткина К. А. Окисление тяжелой сланцевой смолы. Ж. прикл. химин, 1963, 36, вып. 7, 1591—1594.
- Кокурин А. Д., Галуткина К. А. Окисление смолы полукоксования сланца и ее фракций перманганатом калия в щелочной среде. Тр. Ленингр. технол. ин-та им. Ленсовета, 1964, вып. 63, 80-85.
- Кокурин А. Д., Галуткина К. А. Изучение тяжелых фракций сланцевых смол, полученных в различных условиях. Ж. прикл. химии, 1967, 40, № 5, 1112-1116.
- Арро Я. Применение обращенной газовой хроматографии в исследовании тяже-лой смолы сланца-кукерсита. Изв. АН ЭССР. Хим., 1982, 31, № 3, 163-168.
- 5. Пайс Р., Клесмент И., Побуль Л. Углеводороды и кислородные соединения в битумонде сланца-кукерсита. Изв. АН ЭССР. Хим., 1979, 28, № 3, 182— 190
- 6. Бондарь Е., Вески Р. Исследование продуктов ступенчатого азотнокислого окис-Болодри Е., Бески Г. Песисдование продуктов стунстичатого азотнокислого окисления керогена кукерсита. З. Алифатические моно- и дикарбоновые кислоты. — Изв. АН ЭССР. Хим., 1981, 30, № 3, 172—179.
 Егорков А. Н., Кутуев Р. Х., Яковлев В. И. Высшие моно- и дикарбоновые кислоты в продуктах озонирования некоторых керогенов. — Хим. тверд. топл., 1070.
- 1979, № 4, 122—127.
- 8. Уров К. Э., Листрем А. И. К характеристике органического вещества горючих

206

сланцев Припятского месторождения Белоруссии по составу битумоида и щелочного гидролизата. — Хим. тверд. топл., 1979, № 3, 97—103.

- щелочного гидролизата. Хим. тверд. топл., 1979, № 3, 97—103.
 9. Klesment, I. Investigation of aliphatic structures of oil shales by pyrolysis and chromatographic methods. J. Anal. Appl. Pyrol., 1980, 2, N 1, 63—77.
 10. Klesment, I., Nappa, L. Investigation of the structure of Estonian oil shale kukersite by conversion in aqueous suspension. Fuel, 1980, 59, N 2, 117—122.
 11. Hayatsu, R., Winans, R. E., Scott, R. G., McBeth, R. L. Is kerogen like material present in coal, 1. Buffer-controlled permanganate oxidation of coal. Fuel, 1981, 60, N 2, 158—161.
 12. Клесмент И. Р., Риккен Ю. Т., Уров К. Э. Характеристика оленекского богхеда по данным термической деструкции. Хим. тверд. топл., 1977, № 2, 126—132
- 132

Институт химии Поступила в редакцию Академии наук Эстонской ССР 17/XI 1982

Linda POBUL, I. KLESMENT, J. ARRO

KUKERSIIDI RASKE UTTEÕLI UURIMINE

2. Oksüdeerimine kaaliumpermanganaadiga

Artiklis on esitatud kukersiidi raske utteõli (keemise algtemperatuur 300 °C) oksüdeerimise tulemused; oksüdeerimine toimus kaaliumpermanganaadiga leeliselises keskkonnas. Oksüdatsiooniproduktides, mis saadi temperatuuril 30 °C, identifitseeriti 5% alifaatsete monokarboksüülhapetena C_2 — C_{19} , 21% alifaatsete dikarboksüülhapetena C_4 — C_{17} ja 17% aromaatsete karboksüülhapetena. Oksüdatsiooniproduktis, mis saadi temperatuuril 95 °C, identifitseeriti 4% dikarboksüülhapetena C_4 — C_7 ja 30% aromaatsete hapetena. Mono-ka boksüülhapetes on 16 ja 18 süsinikuaatomit sisaldavate ühendite ning aromaatsetes hapetes 1,2- ja 1,2,4-polükarboksüülhapete sisaldus märkimisväärselt kõrge. On vaadel-dud nanda hapata takkinise väimelusi raela põluutkiviõi kesüteteiteiteite dud nende hapete tekkimise võimalusi raske põlevkiviõli oksüdeerimisel.

Linda POBUL, I. KLESMENT, J. ARRO

40

INVESTIGATION OF HEAVY SEMICOKING OIL OF KUKERSITE SHALE

2. Oxidation with potassium permanganate

The article reports the results of stepwise alkaline potassium permanganate oxidation of kukersite shale oil (boiling at over 300 °C). The oxidation products obtained at 30° comprised 5% of aliphatic monocarboxylic acids C_2--C_{19} (AMA), 21% of aliphatic dicarboxylic acids C_4--C_{17} (ADA), and 17% of aromatic carboxylic acids (ACA). The oxidation product at 95° was found to contain 4% of ADA C_4--C_7 and 30% of ACA. The content of C_{16} and C_{18} in AMA and that of carboxylic acids at 1,2- and 1,2,4-positions in ACA is remarkably high. The possible ways of formation of those acids during heavy shale oil oxidation are discussed.