EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 32. KÕIDE KEEMIA. 1983, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 32 ХИМИЯ. 1983, № 3

УДК 532,612; 532,695

Рутт ТОМСОН, Н. МАСПАНОВ, С. ФАЙНГОЛЬД

ДИНАТРИЕВЫЕ СОЛИ 1-АМИНОАЛКИЛ-N,N-БИС(@-ЭТАНСУЛЬФОКИСЛОТЫ)

2. КОЛЛОИДНО-ХИМИЧЕСКИЕ СВОЙСТВА

(Представил О. Эйзен)

Динатриевые соли 1-аминоалкил-N,N-бис (ω-этансульфокислоты) (ДААБЭС) [¹] относятся к группе несбалансированных амфолитных ПАВ, и поэтому их поверхностно-активные свойства проявляются при рН 8—9. По сравнению с алкилтауратами ДААБЭС лучше растворяются в воде, и практически все члены гомологического ряда, включая С₁₄, позволяют определять поверхностно-активные свойства в принятых на практике концентрациях [²].

Поверхностное натяжение растворов ДААБЭС в бидистиллированной воде измеряли при 20 и 50 °С сталагмометрическим способом с регулированием среднего времени, необходимого для образования капли, которое для всех случаев составляло 2 мин. Результаты измерений представлены на рис. 1. Как видно из кривых 1, 2 и 4, 5, поверхност-

Рис. 1. Изотермы поверхностного натяжения водных растворов ДААБЭС: 1 — динатриевая соль 1-аминооктил-N,N-бис (ω-этансульфокислоты) при 20°, 2 — она же при 50°, 3 — натриевая соль 1-аминооктил-N-этансульфокислоты при 20°, 4 — динатриевая соль 1-аминооктил-N,N-бис (ω-этансульфокислоты) при 20°, 5 — она же при 50°.

ное натяжение ДААБЭС с повышением температуры снижается. В гомологическом ряду поверхностная активность возрастает с увеличением длины цепи алкильного радикала до С₁₆. Увеличение гидрофильной части молекулы этого типа ПАВ приводит к снижению по-

3 ENSV TA Toimetised. K 3 1983

189

Таблица 1

Поверхностно-активные свойства ДААБЭС

Число атомов С в алкиль- ной цепи	Поверхност- ное натяже- ние при пре- дельной адсорбции, H/м · 10 ⁻³	Предельная адсорбция, 10 ¹⁰ ·моль/см ²		Площадь, занимае- мая одной молеку- лой в насыщенном адсорбционном слое, Å ²		Толщина насыщен- ного адсорбцион- ного слоя, Å	
		20°	50°	20°	50°	20°	50°
8 10 12 14 16	32 30 28 28 28 25	4,6 	$ \begin{array}{c} 1,5\\2,2\\0,5\\1,4\\2,2\end{array} $	36 183 —	110 75 366 120 75	13,8 <u>3,1</u> <u>-</u>	4,5 9,2 1,7 5,4 9,8

Рис. 2. Краевой угол смачивания водных растворов ДААБЭС: 1 — динатриевая соль 1-аминооктил-N,N-бис (ш-этансульфокислоты), 2 — динатриевая соль 1-аминодецил-N,N-бис (шэтансульфокислоты), 3 — динатриевая соль 1-аминододецил-N,N-бис (ш-этансульфокислоты), 4 — динатриевая соль 1-аминотетрадецил-N,N-бис (ш-этансульфокислоты), 5 — динатриевая соль 1-аминогексадецил-N,N-бис (ш-этансульфокислоты).

верхностной активности. При сравнении гомологов ДААБЭС и натриевых солей 1-аминоалкил-N-этансульфокислоты, имеющих в алкильной цепи до атома азота одинаковое число атомов углерода, установлено, что у первых поверхностная активность меньше, чем у вторых [³]. По изотермам поверхностного натяжения были рассчитаны предельная адсорбция, площадь, занимаемая одной молекулой в адсорбционном слое, и его толщина, для чего было использовано уравнение адсорбции Гиббса в логарифмической форме [⁴] (табл. 1).

Полнота насыщения адсорбционного слоя ДААБЭС и сравнительная легкость образования мицелл (критическая концентрация мицеллообразования для С₁₂ при 20° составляет 0,03 · 10⁻³ М) свидетельствуют о том, что ДААБЭС можно причислить к сильным ПАВ. Интересно отметить, что из членов гомологического ряда ДААБЭС С₁₂ является как бы «перевальным» гомологом. Его предельная адсорбция минимальна (0,5 моль/см²), а площадь, занимаемая одной молекулой в насыщенном адсорбционном слое, достигает максимальной величины (366 Å²). Почти вся гидрофобная часть C_{12} находится на поверхности воды. Поэтому толщина его адсорбционного слоя при максимальном насыщении минимальна (1,7 Å). Увеличение гидрофобной части приводит к росту предельной адсорбции, к уменьшению площади, занимаемой одной молекулой в насыщенном слое, и к увеличению адсорбционного насыщенного слоя. Такая закономерность, т. е. улучшение поверхностивоврхностию в гомологическом ряду ДААБЭС до гомолога C_{12} и ухудшение их после C_{12} (при дальнейшей гидрофобизации), отчетливо видна по кривым смачивания на рис. 2.

Краевые углы смачивания θ определяли на техническом парафине при 20° и времени экспозиции 3 мин. Краевой угол смачивания для дистиллированной воды составил 104°, а для раствора додецилсульфата натрия при концентрации 1·10⁻³ М — 65°. Из синтезированных соединений максимальной смачивающей способностью обладает гомолог C₁₂, для которого θ при концентрации 1·10⁻³ М составляет 43°, а при концентрации 2·10⁻³ М — 35° (рис. 3). Такие вещества можно отнести

Рис. 3. Краевой угол смачивания водных растворов ДААБЭС в зависимости от длины алкильной цепи при концентрации $2\cdot 10^{-3}~M.$

к хорошим смачивателям. С увеличением или с уменьшением гидрофобной части их смачивающая способность снижается, но всегда остается выше, чем у додецилсульфата. Исключение составляет гомолог С₈, смачивающая способность которого немного хуже, чем у додецилсульфата.

Пенообразующая способность определялась по Росс-Майлсу [⁵] (табл. 2). По этому свойству синтезированные соединения превосходят такое широко распространенное ПАВ, как триэтаноламиновая соль додецилсульфоэфира. Например, начальная высота пены в случае 0,25%-ной концентрации триэтаноламиновой соли додецилсульфоэфира составляла 156 мм и через 5 мин 130 мм, а в случае динатриевой соли 1-аминотетрадецил-N,N-бис (ω-этансульфокислоты) — 194 мм и через 5 мин — 172 мм.

Диспергирующая способность [6]. В отношении кальциевых мыл соеди-

Таблица 2

Число атомов С в алкиль- ной цепи	Время, мин	Концентрация, %							
		0,25		0,125		0,0625		0,0313	
		I	II	1	II	I	II	. 1	II
NA LONG						17			0
8	0	83	0	57	0	11		0	0
	3	30	0	4	0	4	0	0	0
10	0	10	108	161	157	141	80	91	30
	3	154	181	146	149	115	70	63	0
	5	154	178	130	136	113	54	50	0
12	0	212	220	189	174	139	133	65	91
	3	189	191	163	157	113	117	52	77
	5	183	189	161	152	107	117	52	77
14*	0	176	194	163	185	57	178	22	154
	3	154	176	143	165	49	154	13	133
	5	148	172	138	165	42	154	13	133

Пенообразующая способность ДААБЭС в дистиллированной (1) и жесткой (5,35 мг-экв/л) (11) водах при 50°, мм

* Перламутровый раствор.

нения типа ДААБЭС значительно превосходят широко применяемый в композициях метаупон (олеилметилтаурид). Так, количество диспергатора, необходимого для удержания кальциевых мыл в мелкодисперсном состоянии, составляет для растворов стандартно жесткой воды с гомологом C₈ 100% в расчете на кальциевую соль олеиновой кислоты, с C₁₀ — 18, C₁₂ — 7,5, C₁₄ — 2,5, C₁₆ — 8,0%. Для метаупона этот показатель равен 16,0%. На основе ДААБЭС могут быть созданы моющие средства без фосфатов.

Моющая способность растворов натриевых солей 1-аминоалкил-N-этансульфокислоты и ДААБЭС определена методом стирок образцов стандартно загрязненной хлопчатобумажной ткани в лаундерометре с предварительным и последующим фотометрированием лейкометром Цейсса. Использовали дистиллированную воду, 0,125%-ную концентрацию растворов и температуру 50°. Результаты обрабатывали по формуле Кубелки—Мунка. В табл. 3 данные для стандартного лаурилсульфата натрия приведены для сравнения.

Моющая способность синтезированных веществ возрастает в гомологическом ряду с увеличением длины цепи алкильного радикала. Различие в моющей способности натриевых солей 1-аминоалкил-Nэтансульфокислот и ДААБЭС для низших гомологов невелико, для высших значительно. Исследуемые образцы испытывали в качестве диспергаторов кальциевых и магниевых мыл в разработанных нами оптимальных составах бесфосфатных моющих средств. Моющую способность определяли при 20, 50 и 80° в стандартно жесткой воде с концентрацией растворов 0,25%. Лучшие результаты дали низшие гомологи, а из низших лучшими были ДААБЭС. Это связано, видимо, с их лучшей растворимостью и большей способностью связывать ионы кальция и магния в растворимые поверхностно-активные соли и комплексы. Для сравнения в табл. 4 приведены данные о моющей способности стирального порошка «Астра», в достаточно хорошо разработанном составе которого содержится до 30% триполифосфата натрия. Как видно, бесфосфатное средство с динатриевой солью 1-аминооктил-N.N-бис (ω-этансульфокислоты) в качестве умягчителя в 1,4 раза превосходит по моющей способности средство «Астра». Известные ДЭТ,

Моющая способность натриевых солей 1-аминоалкил-N-этансульфокислот и ДААБЭС

Вещество	Показатель, усл. ед.		
Натриевая соль 1-аминооктил-N-этансульфокислоты	8,2		
Динатриевая соль 1-аминооктил-N,N-бис (ω-этансульфокислоты)	7,8		
Натриевая соль 1-аминододецил-N-этансульфокислоты	38,5		
Динатриевая соль 1-аминододецил-N,N-бис (ω-этансульфокислоты)	20,1		
Лаурилсульфат натрия	13,6		

Таблица 4

Моющая способность бесфосфатных моющих средств, содержащих натриевые соли 1-аминоалкил-N-этансульфокислоты (I) и ДААБЭС (II)

1. 1	Число ато- мов С в	Температура, °С			
Вещество	алкильной цепи	20	50	80	
I II II II II II K Acrpa»	8 8 10 10 12 12 12 14 14 14 16 16 16 	32,4 37,0 16,6 29,4 	$\begin{array}{c} 34,5\\ 37,3\\ 23,1\\ 26,0\\ 26,6\\ 27,2\\ 28,5\\ 23,2\\ 29,1\\ 22,3\\ 26,9\\ \end{array}$	30,9 35,6 35,8 36,6 34,5 29,2 	
Лаурилсуль- фат натрия	(YL-N,N-115(0-1	-AMIMOAL	19,2	19,9	

«Пойнт», «Амбрелла», содержащие до 40% триполифосфата натрия, при тех же условиях обладают моющей способностью в пределах 30—40 усл. ед. и тоже уступают разработанному нами бесфосфатному составу.

Исследуемые вещества в стандартных условиях не являются эмульгаторами, т. е. не образуют эмульсии типа масло-вода.

Выводы

1. Динатриевые соли 1-аминоалкил-N,N-бис (ω-этансульфокислоты) — полноценные поверхностно-активные вещества. При предельной адсорбции они снижают поверхностное натяжение воды до 25—38 Н/м·10⁻³. Совокупностью наиболее ценных свойств обладает гомолог C₁₂.

 Динатриевые соли 1-аминоалкил-N,N-бис (ω-этансульфокислоты) хорошие пенообразователи, смачиватели, моющие вещества, диспергаторы кальциевых и магниевых мыл.

ЛИТЕРАТУРА

 Томсон Р., Файнгольд С., Ройз Д. Динатриевые соли 1-аминоалкил-N,N-бис (ω-этансульфокислоты).
 Синтез. — Изв. АН ЭССР. Хим., 1983, 32, № 2, 114—118.
 Томсон Р., Файнгольд С., Маспанов Н. Коллондно-химические свойства-н-алкил-

- аминоэтилсульфатов и -сульфонатов. 2. Смачивание, пенообразование и мою-щая способность. Изв. АН ЭССР. Хим. Геол., 1977, 26, № 3, 177—184. 3. Томсон Р., Файнгольд С., Маспанов Н. Коллоидно-химические свойства н-алкил-аминоэтилсульфатов и -сульфонатов. 1. Поверхностное натяжение, критиче-ская концентрация мицеллообразования и эмультирующая способность. Ила АН ЭССР. Хим. Боог. 1976. 25. № 2, 102 Изв. АН ЭССР. Хим. Геол., 1976, 25, № 3, 193—198.
- 4. Hommelen, J. R. The elimination of errors due to evaporation of the solution in the determination of surface tensions. - J. Colloid and Interface Sci., 1959, 14, 385 - 388.
- 5. Неволин Ф. В. Химия и технология синтетических моющих средств. М., 1971, 398-400.
- 6. Cahill, J. A., Lincoln, R. M., Mayers, J. A. Dérivés d'acides amino-sulfoniques, leur préparation et leur utilisation dans les détergents. Франц. пат. № 1.557.528. 1969.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 31/I 1982

Rutt TOMSON, N. MASPANOV, S. FAINGOLD

1-AMINOALKÜÜL-N,N-BIS(@-ETAANSULFOHAPPE) DINAATRIUMISOOLAD

2. Kolloidkeemilised omadused

Artiklis on esitatud 1-aminoalküül-N,N-bis(ω-etaansulfohappe) dinaatriumisoolade pindaktiivsete omaduste määramise tulemused. Sünteesitud homoloogilise rea ühenditel on rahuldavad märgumis- ja pesemisomadused, nad on head dispergaatorid, nende vahu-moodustamisvõime on kõrge. Parimad kolloidkeemilised omadused on ühendil, mille alküülahel sisaldab 12 süsinikuaatomit.

Emulgeerivaid omadusi nimetatud homoloogilise rea ühenditel ei täheldatud.

Rutt TOMSON, N. MASPANOV, S. FAINGOLD

DOUBLE SODIUM SALTS OF 1-AMINOALKYL-N,N-BIS(@-ETHANESULFOACID)

2. Colloid-chemical properties

Surface-active properties of double sodium salts of 1-aminoalkyl-N,N-bis(ω -ethanesulfo-acid) were investigated. It was proved that synthesized derivatives of the homologous chain demonstrate sufficient wetting and detergent power, good dispersion ability and a high foaming power. The best colloid-chemical properties belong to the compound with an alkyl chain C12.

The above-mentioned compounds do not possess any emulsifying properties.