EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 32. KÕIDE KEEMIA. 1983, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 32 ХИМИЯ. 1983, № 3

https://doi.org/10.3176/chem.1983.3.04

УДК 541.12

Анне ЭЛЬВЕЛЬТ, М. КУУС, Л. КУДРЯВЦЕВА

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ДАВЛЕНИЯ ПАРА *н*-АЛКЕНОВ

(Представил О. Эйзен)

Данные о температурной зависимости насыщенного пара химических соединений используются при решении ряда научных и технических проблем, связанных с установлением состава сложных органических смесей и их разделением, определением чистоты соединений и строения синтезируемых веществ. В настоящее время нет ни одного крупного предприятия химической или смежных отраслей промышленности, где бы ни требовались эти данные на практике. В точных данных о температурах кипения и давления пара заинтересовано производство индивидуальных соединений высокой степени чистоты, составляющее в настоящее время крупную отрасль нефтеперерабатывающей промышленности. Экспериментальные данные о давлении пара и температурах кипения большого числа органических соединений приведены в [1], проанализированы и систематизированы в [2-4] и скоррелированы в форме уравнений в [5, 6]. Подавляющее большинство этих данных относится к углеводородам, которые составляют самую большую группу родственных соединений, образованных из двух ковалентно связанных элементов. Среди них менее всего изучены свойства углеводородов с кратной связью, в том числе нормальных алкенов. Сказанное касается прежде всего позиционных и конфигурационных изомеров высших н-алкенов, свойства которых были в последнее время предметом изучения авторов настоящего сообщения. Причина отсутствия данных о свойствах индивидуальных изомеров высших н-алкенов кроется в трудности их очистки, обусловленной близостью свойств, высокой реакционной опособностью, склонностью к изомеризации и полимеризации. Разработанные под руководством О. Эйзена методы синтеза, анализа и очистки индивидуальных изомеров н-алкенов и производство первых опытных партий указанных соединений позволили приступить к более детальному изучению их свойств.

Для получения надежных данных по давлению пара и температурам кипения следует уделять особое внимание деталям эксперимента. Исследование свойств изомерных *н*-алкенов проводится в условиях дефицита вещества и времени. Успешно преодолеть эти затруднения нам удалось с помощью полумикроэбуллиометров с термистором в качестве измерителя температуры, разработанных В. Михкельсоном [^{7, 8}].

Результаты измерения температур кипения индивидуальных изомеров *н*-алкенов С₈—С₁₂ при пяти заданных давлениях скоррелированы в форме уравнения Антуана, константы которого наряду с экспериментальными данными приведены в таблице. Среди математических выражений, описывающих связь давления насыщенного пара соединения и температуру, уравнение Антуана

$$\lg P = A - B/(C+T),\tag{1}$$

где P — давление, Па; T — температура, К; A, B и C — константы, следует признать наиболее удачным. Для выражения зависимости температуры кипения соединения от давления оно может быть записано в форме

$$T = B/(A - \lg P) - C.$$
 (2)

Константы были рассчитаны методом наименьших квадратов на ЭВМ венгерского производства «Videoton» 1010В. Среднее отклонение рассчитанных по уравнению (2) и экспериментальных данных не превышает 0,01 К, максимальное — 0,05 К.

Наличием ковалентной связи между атомами водорода и углерода обусловлено вполне определенное и закономерное изменение физикохимических свойств углеводородов. Как было показано на примере 1-алкенов [⁹], в их гомологическом ряду также вполне закономерно изменяются константы A, B и C уравнения Антуана. Аналогичная по

характеру связь наблюдается и в гомологических рядах μc - и rpancизомеров (рис. 1—3).* Плавный характер полученных кривых свидетельствует о коррелятивности результатов и одновременно об отсутствии значительных несистематических погрешностей в исходных экспериментальных данных. Экстраполяция полученных зависимостей констант A, B, C в сторону уменьшения числа атомов углерода в молекуле изомера позволила проверить согласованность наших резуль-

* Мы не смогли физически обосновать это явление,

татов с данными справочника [4] об изомерах *н*-пентена и *н*-гексена. Как следует из рис. 1—3, значения констант уравнения Антуана для большинства изомеров указанных *н*-алкенов согласуются с данными для высших гомологов. Отклонение, наблюдаемое для константы *А транс*-2-пентена и для всех трех констант *цис*-2-гексена, свидетельствует о необходимости проверки экспериментальных данных [^{4, 10}] о температурной зависимости давления насыщенного пара этих изомеров.

Расхождение констант изомеров *н*-гептенов и *н*-октенов, также заимствованных из [4], объясняется прежде всего способом их опреде-

X							11/1	-	
	Α	В	C	26664	39997	53329	79993	При атм. давл.	Атм. давл.
			00000					-	
'n,	1004	1353,443	-60,368	352,62	364,18	372,94	386,19	394,52	101538
5,0	1404/	1350,198	-04,138	306,76	368,37	377,17	390,49	399,55	103444
3,0	0710	1348,038	-04,130	350,31	367,84	376,61	1 389,86	398,85	103458
9,0	6002	1344,898	-02,380	354,14	365,72	374,52	387.82	396.09	101271
6,0	11920	1352,557	-62,498	354,62	366.17	374.88	388 18	396.08	100338
9.6	04600	1353.750	-60.637	353.65	365.97	374.07	387 30	205 22	100000
0 6	14915	1343 498	-69,690	353.66	365.91	10,110	20,100	000,000	067001
0	15171	1100112	20,700	00,000	17,000	010,21	17,100	290,09	106101
ñ.	11100	111,2241	77 101	019,01	391,91	401,18	415,21	424,30	102258
'n	66010	1431,298	-/1,131	3/9,26	391,41	400,62	414.53	422.19	98645
ő.	05049	1423,264	-69,253	377.01	389.21	398,44	419.43	491.40	10001
6	06343	1422.278	-70.818	377.51	389.60	308 70	A19.67	100 0E	117701
0	05770	1499 631	-67 718	376 30	200,000	000,13	412,01	420,00	20/02
0	05693	1410.021	70.259	277.01	000,03	001,04	411,82	420,94	102365
n o	02000	1410,000	700,01	10,110	389,14	398,34	412,24	420,02	98952
ה מ	07000	1498,858	107.01-	401,2/	414,06	423,68	438.28	446.95	100218
ກົບ	08130	1497,172	-19,129	400,68	413,38	422.96	437.46	446.63	101711
ות	,07236	1497,894	-76,153	398,53	411.21	420.86	135 41	444.00	100338
6	,07616	1494,434	-77,457	398.83	41147	491.07	135 56	444.30	100000
6	60020	1498,613	-75.151	397.84	410.55	100.000	100,00	00,111	000001
6	.07394	1493.889	-76.761	308.18	110,00	120,20	404,11	440,03	11/001
6	07010	1497,618	-75 159	307,69	00,011	410.00	434,93	444,17	101818
6	08199	1501 004	76.954	308,69	111.00	413,30	434,54	443,37	100698
0	08067	1560 001	010,001	10,020	411,29	420,91	435,42	444,24	100738
50	10000	1760,001	210,00-	416,30	431,44	441,40	456,44	465,52	100578
no	00700	1203,121	-80,594	421,28	434,48	444,48	459,59	468,60	100298
סת	02020	1201,159	-86,138	420,83	433,97	443,91	458.95	468.49	101711
ם מ	,08164	1559,595	-83,965	418,96	432,13	442.11	457.90	466.30	100565
סמ	,08461	1555,233	-85,172	418,99	432,12	442,06	457,08	466.13	100595
סמ	10880	1567,310	-81,928	418,09	431.29	441.28	456.30	465.80	101408
ກົດ	108351	1556,814	-84,227	418,53	431.65	441.61	456.67	465.74	100578
ກ໌ດ	09423	1573,171	-80,545	417,52	430.73	440.74	455.86	465.33	101418
ĥ	10162	1568,771	-83,008	418.52	431.64	441.61	AFG GA	465,20	101010
6	22660	1619,912	-90,846	437,44	451.01	46130	476.85	486.76	101000
6	09726	1625.421	-92.357	440.31	152.06	00,101	10,00	100,001	000101
6	11749	1696 092	00000	120,011	100,00	404,30	4/9,91	490,30	102938
50	00624	1690 410	00 010	21,804	403,22	463,47	478,96	488,50	101071
60	100220	1020,412	212,06-	431,81	451,43	461,73	477,31	486,71	100631
ño	00000	10122,023	-09,418	436,90	450,53	460,85	476.45	486.83	102951
ກົດ	1 40660	126,6101	-90,681	437,29	450,89	461,17	476,71	486,63	101885
n'o	71060	1019,321	-90,562	437,30	450,89	461,18	476,74	486.87	102365
'nc	000000	1010,023		436,22	449,84	460,15	475.73	485.69	101885
З,	1 00060	1 666,0101		437,17	450,77	461,07	476,61	486.51	101831

Константы уравнения Антуана и экспериментальные температуры кипения изомеров и-алкенов, К при давлениях, Па

I

ления, отличным от нашего. Не располагая достаточно надежными данными о температурной зависимости давления пара в широком интервале температур, авторы оценили константу С по результатам измерения одного из изомеров и, приписав полученное значение всем цис- и транс-изомерам данного н-алкена, использовали экспериментальные данные только для определения констант А и В.

В заключение следует заметить, что температурная зависимость давления насыщенного пара как основное свойство химического соединения, обусловленное его природой и структурными особенностями, связана с другими его свойствами, в частности с энтальпией испарения — характеристикой межмолекулярного взаимодействия и ассоциации в конденсированном состоянии. Использованное в настоящей работе для корреляции полученных данных уравнение Антуана достаточно удобно для выражения коэффициента

$$\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{2,303BP}{(T+C)^2},$$
(3)

подстановка которого в уравнение Клаузиуса-Клапейрона позволяет оценить энтальпию испарения через константы уравнения Антуана. Результаты оценки будут приведены в следующем сообщении.

ЛИТЕРАТУРА

- 1. Boublik, T., Fried, V., Hala, E. The Vapour Pressures of Pure Substances. Amsterdam-London-New York, 1973, 626.
- 2. Стэлл Д. Р. Таблицы давления паров индивидуальных веществ. М., 1949, 72.
- 3. Физико-химические свойства индивидуальных углеводородов. Под ред. В. М. Татевского. М., 1960, 412. 4. Zwolinski, B. J., Wilhoit, R. C. Handbook of Vapor Pressures and Heats of Vapori-
- Wichterle, J., K. C. Handbook of Vapor Pressures and Heats of Vaporization of Hydrocarbons and Related Compounds. Texas, 1971, 329.
 Wichterle, J., Linek, J. Antoine Vapor Pressure Constants of Pure Compounds. Prague, 1971, 97.
 Maczynski, A., Maczynska, Z., Skrzecz, A. Verified Vapor-Liquid Equilibrium Data. Warszawa, 1979, 989. 5.
- 6.
- 7. Michkelson, W. J., Elwell, A. A., Kudrjawzewa, L. S., Eisen, O. G. Die Druck-
- abhängigkeit der Siedetemperaturen der stellungs- und konfigurationsisomeren n-Octene, n-Nonene und n-Decene. Monatsh. Chem., 1974, 105, 1379—1386.
 8. Mihkelson, V., Kirss, H., Kudrjavzeva, L., Eisen, O. Vapour—liquid equilibrium T-x measurements by a new semi-micromethod. Fluid Phase Equilibria, 1077/1072. N L 2012.
- Forziati, A. F., Camin, D. L., Rossini, F. D. Density, refractive index, boiling point and vapor pressure of eight monoolefin (1-alkene), six pentadiene and two cyclomonoolefin hydrocarbons. J. Res. NBS, 1950, 45, 406—410.
 Camin, D. L., Rossini, F. D. Physical properties of the 17 isomeric hexenes of the APJ research series. J. Phys. Chem., 1956, N 10, 1446—1451.

Институт химии Академии наук Эстонской ССР

Поступила в редакцию 11/X 1982

Anne ELVELT, M. KUUS, L. KUDRJAVTSEVA

n-ALKEENIDE KEEMISTEMPERATUURIDE SÕLTUVUS RÕHUST

n-alkeenide C_8 — C_{12} isomeeride keemistemperatuurid on määratud ebulliomeetriliselt viiel erineval rõhul. Katseandmete põhjal on arvutatud kõigi isomeeride Antoine'i võrrandi konstandid. Tulemused näitavad, et n-alkeenide isomeeride homoloogilistes ridades kaasneb süsinikuaatomite arvu muutumisega Antoine'i võrrandi konstantide reeglipärane muutumine.

Anne ELVELT, M. KUUS, L. KUDRYAVTSEVA

THE DEPENDENCE OF BOILING POINTS OF *n*-ALKENES ON PRESSURES

The boiling temperatures of unbranched C_8 — C_{12} alkenes were determined by an ebulliometric method at five different pressures. On the basis of experimental results the Antoine equation constants were calculated. The relationship between the values of the Antoine equation constants and the number of carbon atoms in the molecules of normal alkene isomers were discussed.