EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 29. KÕIDE KEEMIA. 1980, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 29 ХИМИЯ. 1980, № 3

УДК 547.32: 547.315.2: 547.371

К. ЛЭЭТС, Т. КААЛ, Малле ШМИДТ, К. КУДРЯВЦЕВА

ВЛИЯНИЕ ПРИРОДЫ КАТАЛИЗАТОРА НА ТЕЛОМЕРИЗАЦИЮ ИЗОПРЕНА С а-ХЛОРМЕТИЛИЗОПРОПИЛОВЫМ ЭФИРОМ

Κ. LÄATS, Τ. KAAL, Malle SCHMIDT, Κ. KUDRJAVTSEVA. KATALŪSAATORI MOJU ISOPREENI JA α-KLOORMETŪŪLISOPROPŪŪLEETRI TELOMERISATSIOONILE

K. LÄÄTS, T. KAAL, Malle SCHMIDT, K. KÜDRYAVTSEVA. THE INFLUENCE OF THE NATURE OF CATALYST ON TELOMERIZATION OF ISOPRENE WITH α-CHLORMETHYLISOPROPYL-ETHER

Состав продукта теломеризации изопрена с а-хлорметилизопропиловым эфиром в присутствии ZnCl₂ (в качестве катализатора) приведен нами ранее [¹]. Образующийся теломер состоит в основном из моноаддукта 1-хлор-3-метил-5-изопропокси-2-пентена, который представляет собой продукт 1,4-присоединения хлорэфира к изопрену. Последний, по данным ГЖХ и ЯМР-спектров, состоит из смеси *E*- и *Z*-изомеров, которые выделены нами в чистом виде с помощью препаративной ГЖХ.

В настоящей работе исследовалось влияние природы катализатора на протекание реакции теломеризации. Результаты, полученные в присутствии разных катализаторов, приведены в таблице.

		0	_							1
бан арада Катализатор	Количество катализатора, ммоль/л	ypa, °C	акции,	я, %	Выход моно- аддукта, % от теломера	Содержание хлора в моно- аддукте, %	Содержание пер- вичного аллиль- ного хлора, %	Содержание изо- мерных хлоридов в моноаддукте, %		
		par	i pe	pcH				первичных		
		Темпе	Время	Конве Выхол				Z	Е	третич- ного
ZnCl ₂	18,4*	31-22	240	62,4	88,0	19,6	17,9	30,8	56,0	6,5
SnCl ₄ (раствор п дихлорэтане)	в 0,22	40-21	103	59,4	83,4	20,1	17,5	23,6	63,0	8,1
То же	1,1	45-22	12	64,1	71,0	20,4	17,4	36,2	49,2	6,6
Snl ₂ ·2H ₂ O (pact										
вор в эфире)	0,18	30-22	100	56,4	83,5	20,1	15,3	17,5	59,0	19,7
BiCl ₃	31,8*	28-21	1200	70,6	74,0	20,2	17,3	31,4	53,0	5,1
FeCl ₃	30,8*	52 - 22	70	55,9	37,4	20,0	18,0	23,0	52,0	9,2

Теломеризация изопрена с а-хлорметилизопропиловым эфиром в присутствии разных катализаторов

* Катализатор нерастворимый,

Наилучший выход моноаддукта (88% от общего количества теломера) достигнут при применении ZnCl₂. Почти такие же результаты получены в присутствии SnCl₄ (0,22 ммоль/л). Повышение концентрации последнего до 1,1 ммоль/л снижало выход моноаддукта от 83 до 71%. Изменялось также содержание Е- и Z-изомеров в нем. Высокий выход моноаддукта получен также в присутствии SnCl₂·2H₂O. В отличие от продуктов, полученных в присутствии других катализаторов, в этом продукте содержится 19,7% третичного хлорида — продукта 1,2-присоединения хлорэфира к изопрену. В присутствии BiCl₃ реакция идет медленно. Повышение температуры реакционной смеси отмечено приблизительно через 0,5 ч после прибавления катализатора. Состав моноаддукта примерно такой же, как при применении ZnCl₂, но выход его ниже. Очень энергично идет реакция с FeCl₃, однако выход моноаддукта намного ниже, чем при применении других катализаторов. В реакции теломеризации изопрена с его гидрохлоридами в присутствии этого катализатора наблюдалось также образование большого количества высших теломеров [2].

Сделана попытка провести теломеризацию в присутствии CdCl₂. При перегонке реакционной смеси теломер не получен.

Во всех опытах, приведенных в таблице, в качестве растворителя использовался *н*-гексан. Испытывались также эфир, бензол, четыреххлористый углерод и ацетон (катализатор SnCl₄). Во всех растворителях, кроме ацетона, конверсия была почти одинаковой — 71—75% (за 24 ч). В ацетоне конверсия составляла 20,6% и выход моноаддукта — 44%. Состав последнего во всех случаях был практически одинаков.

Выводы

Природа катализатора мало влияет на состав продуктов теломеризации. Исключение составляет катализатор высокой активности FeCl₃, в присутствии которого преобладает реакция роста цепи (выход моноаддукта мал). В присутствии катализатора средней активности SnCl₂·2H₂O увеличивается выход третичного изомера моноаддукта за счет уменьшения количества Z-изомера.

Экспериментальная часть

а-Хлорметилизопропиловый эфир получен по методике [³] с выходом 58%, т. кип. 98—105°С, d_4^{20} 0,9790, n_D^{20} 1,4080. Найдено, %: Cl 31,3. Вычислено, %: Cl 32,6. Изопрен и растворители — гексан и бензол — обезвоживались кипячением над металлическим натрием с последующей перегонкой. Эфир и CCl₄ сушили P₂O₅ и перегоняли.

В трехгорлую колбу (0,5 л), снабженную мешалкой, холодильником с хлоркальциевой трубкой и термометром, загружали 25 мл (0,225 моль) хлорэфира, 25 мл (0,25 моль) изопрена и 50 мл растворителя. При охлаждении водой и перемешивании добавляли катализатор. Продукт реакции промывали водой для извлечения катализатора и высушивали на CaCl₂. Растворитель отгоняли и остаток перегоняли в вакууме. Т. кип. 65—75° (5 мм).

Третичный хлорид 3-хлор-3-метил-5-изопропокси-1-пентен идентифицирован с помощью ГЖХ по эталону, полученному из 3-метил-5-изопропокси-1-пентен-3-ола [¹] с PCl₂. В продукте обнаружен также первичный хлорид, образующийся в результате аллильной перегруппировки. Продукты теломеризации анализировались в приведенных ранее условиях [¹]. Времена удерживания 3-хлор-3-метил-5-изопропокси-1-пентена, Z- и E-1-хлор-3-метил-5-изопропокси-2-пентена равны соответственно 1,00, 2,14 и 2,74.

ЛИТЕРАТУРА

- Каал Т. А., Эрм А. Ю., Линдсаар А. У., Кальюранд М. Р., Лээтс К. В. О составе продукта теломеризации изопрена с α-хлорметилизопропиловым эфиром. — ЖОрХ, 1975, т. 11, вып. 9, с. 1809—1810.
 Лээтс К. В., Мукс Э. А. О влиянии природы катализатора на состав продук-
- Лээтс К. В., Мукс Э. А. О влиянии природы катализатора на состав продуктов и кинетику теломеризации. ЖОрХ, 1974, т. 10, вып. 9, с. 1857—1860.
 Поконова Ю. В. Галоидэфиры. М.—Л., 1966, с. 82.

Институт химии Академии наук Эстонской ССР

Поступила в редакцию 7/II 1980

inche pana ernoministi

счет уменьшения количестви 2-изомера. мчон

а Хлорметильнопропилоный эфтр получен по методияв [] с силходом 58%, т. кин 98-1052С, ате 0.9790, эте 1.9760. Ниддено, 9, с СІ 31, 8. Вынислено, 9, СГ 92, 6. Изо прей и растворители – текски и бензол – обощномирались Эдипачением над метод лическим натрием с последующий перегодсок. Эфир и ССВ судили Р.О. в перио-

3.3 Вотректораую колбу (0.5. л): списимениую мешадшой, хододильськом с хлоркальциевой трубкой и термолетром, затружали 25 ма (0.225 моле) хаорефира, 35 ма (16.25 моле) пастрева и 58 однологорителя. При охлаждения голой и перемациялания добавалал натранъдтор. Продукт реанция проминали водой иля нанескина катали. затора и высупциали на СаСь. Ростворатель отгонали и остате верстонали в олкууме. - Г. нип. 65-35. (б. ма).

1.3 Треничны хаория Эканр Эменно б изопропокси 1-центев, илентифилирован с помощью ГЖХ, по этазону, полуневному из Эметино-изопронокти-1-центев-2-ока [1] с РСІв. В пролунте обнаружев также перанчный хлария, образующийся и результате аллизьной перетруппирован.