EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 29. KÕIDE KEEMIA. 1980, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 29 ХИМИЯ. 1980, № 3

https://doi.org/10.3176/chem.1980.3.02

УДК 661.482:661.635.68

Т. КАЛЬЮВЕЕ, М. ПЫЛДМЕ, М. ВЕЙДЕРМА

ФИЗИКО-ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ В СМЕСЯХ ФТОРИДА КАЛЬЦИЯ С ПРОДУКТАМИ ДЕГИДРАТАЦИИ МОНОКАЛЬЦИЙФОСФАТА ПРИ НАГРЕВАНИИ

Ранее нами представлены результаты исследования взаимодействия фторида кальция с конденсированными фосфатами кальция с использованием методов термического и химического анализов [¹]. В настоящей работе с целью более глубокого раскрытия химизма этого взаимодействия исследованы твердые продукты нагрева с использованием методов бумажной хроматографии, ИК-спектроскопии и рентгеноструктурного анализа.

Исходные смеси образцов были приготовлены смешиванием CaF₂ с ортофосфорной кислотой (в пределах молекулярного соотношения $R = \text{CaO} : P_2O_5$ от 2,0 до 4,0) с последующим нагревом при 250 °C в течение трех часов. При приготовлении смесей происходило образование Ca(H_2PO_4)₂· H_2O в количестве, зависящем от значения R, а при нагреве — и частичная его дегидратация. Температуры дальнейшего нагрева были выбраны по данным термического анализа смесей.

Для хроматографического анализа продукты нагрева были растворены при температуре 5° с применением катионита Дауекс 50W8. Хроматографирование на бумаге FN-12 было проведено также при температуре 5° с использованием кислотного [²] и щелочного [³] элюентов. Для количественного анализа отдельных форм фосфатов применено «мокрое сжигание» пятен в HClO₄ с последующим колориметрированием по фосфорномолибденовому комплексу [⁴]. ИК-спектры сняты на спектрофотометре Zeiss 75IR в таблетках с KBr, а рентгеноструктурный анализ проведен на дифрактометре ДРОН-1 с использованием медного катода.

Из результатов термического анализа следует, что взаимодействие фторида кальция с продуктами дегидратации монокальцийфосфата в диапазоне температур выше $500-550^{\circ}$ аналогично взаимодействию в системах CaF_2 — $[Ca(PO_3)_2]_n$ и CaF_2 — $Ca_2P_2O_7$ [¹]. Но в низкотемпературной зоне (ниже 550°) имеются существенные различия. В этом интервале температур в смесях, полученных обработкой CaF_2 фосфорной кислотой, выделяется более половины общего количества фтора и фосфора, а атомные соотношения F:P в газах более высоки, чем в высокотемпературной области. В системах с участием мета- и пирофосфата кальция взаимодействие до 550° отсутствует.

Растворимость нагретых образцов, полученных с применением фосфорной кислоты, при обработке катионитом Дауекс 50W8 наиболее низкая в интервале 500—600° (табл. 1). Это указывает на образование при этих температурах фосфата с наиболее высокой степенью полимеризации, поскольку последний характеризуется наихудшей растворимостью при такой обработке, Физико-химические превращения...

Таблица 1

Растворимость продуктов нагрева с катионитом Дауекс 50W8

	R-20			1 5	P-30	1 1	R = 4.0			
Темпе- ратура нагре- ва, °С	P2O5 (06m.), %	Р ₂ О ₅ (раств.), %	$P_2O_5 (pactb.)//P_2O_5 (o6u.), \%$	P2O5 (οδιμ.), %	Р ₂ О ₅ (раств.), %	Р ₂ O ₅ (раств.)/ /Р ₂ O ₅ (общ.), %	P2O5 (06m.), %	P ₂ O ₅ (pacra.), %	$P_2O_5 (pactb.)/(P_2O_5 (oom.), \%)$	
250 480 560 650 1000	47,61 52,21 53,22 54,20 56,86	41,28 47,33 46,63 35,51 44,30	86,71 90,60 87,62 65,51 77,91	37,72 40,56 40,97 40,70 41,90	37,58 35,07 32,73 34,87 33,70	99,62 86,47 79,89 85,58 80,42	31,40 35,28 35,54 33,30 31,02	27,36 26,58 29,60 25,02 25,99	87,51 75,34 83,29 75,14 83,79	

Данные хроматографического анализа (табл. 2) показывают, что реакции CaF_2 с продуктами дегидратации $Ca(H_2PO_4)_2 \cdot H_2O$ начинается задолго до полного завершения дегидратации этой соли. Как известно, при дегидратации чистой соли наблюдается постепенное возрастание степени полимеризации. Например, при 300° $\approx 20\%$ фосфатного вещества находится в высокополимерной форме (n > 5), а по завершении дегидратации (600°) — уже более 95% [⁵].

При нагревании образцов (R=2,0) самое высокое содержание высокополимерных фосфатов (n>5) наблюдается при $480^\circ - 42,2\%$. При дальнейшем нагревании их содержание уменьщается вследствие взаимодействия с CaF₂ — при 560° высокополимерных фосфатов 33,7%, а при 650° только 5,38%. Выше 650° при всех изученных значениях R фосфаты находятся в орто- и пироформе.

По данным рентгеноструктурного анализа *, при смешении фторида кальция с фосфорной кислотой образуется монокальцийфосфат, который при повышении температуры дегидратируется, а продукты дегидратации взаимодействуют с фторидом кальция. Так, на рентгенограмме образца (R=3,0), нагретого до 250°, наблюдаются межплоскостные расстояния, характерные для CaH₂P₂O₇, а в случае образцов, нагретых до 650°, — расстояния, характерные для β -Ca₂P₂O₇ и фторапатита. По мере повышения температуры нагрева относительные интенсивности межплоскостных расстояний CaF₂ уменьшаются, а фторапатита увеличиваются.

ИК-спектры образцов смеси CaF₂ с H₃PO₄ при R=2,0—4,0 и 250° соответствуют спектру кислого пирофосфата кальция, но при R=2,0 наблюдаются неинтенсивные полосы поглощения также при 660, 845, 870, 1100, 1066, 1158 см⁻¹, которые свидетельствуют о присутствии остатка монокальцийфосфата [^{6,7}]. При повышении температуры до 480° появляются новые полосы поглощения в областях 550—800 и 1200—1300 см⁻¹ с одновременным усилением полос при 980—1150 см⁻¹, что характерно для связи Р—О—Р [^{6–8}] и свидетельствует об образовании конденсированных фосфатов в этом интервале температур.

При дальнейшем увеличении температуры до 560° сохраняются полосы поглощения полифосфатов и появляются полосы поглощения, характерные для аниона $P_2O_7^{4-}$ (721, 1145, 1200 см⁻¹) [^{6,7}] (рис. 1). При

^{*} Рентгенограммы сняты совместно с А. Подлеской (Н.-и. ин-т по удобрениям и инсектофунгицидам).

Tabauya 2

Т. Кальювее, М. Пылдме, М. Вейдерма

8.44	12	℃ (Р ₂ О ₅ /Р ₂ О5 (раств.), %	96,06 1,39 	1	5. C.I.	1,39	1	1	1	97,45
Состав продуктов нагрева смесей СаF ₂ с H ₃ PO ₄ при разных температурах		1000	$P_2O_5, \%$	32.37 0,46 	1	1	0,46	1	1	1	32,83
		D°0	Р ₂ О ₅ /Р ₂ О5 (раств.), %	39.43 59,07 	1	1	59,07	1	1	1	98,50
	101	654	$P_{2}O_{5}, %$	13.75 20,60 	1	a se	20,60	1	1	1	34,25
	= 3,0	℃ (Р ₂ О ₅ /Р ₂ О ₅ %	4.40 93,85 	1	1	93,85	0,40	0,27	1	98,92
	R=	560	${\rm b}^{5}{\rm O}^{2^{*}}$ %	1.44 30,72 	1	1	30,72	0,13	0,09	1	32,38
	IPO 180	°C	Р ₂ О ₅ /Р ₂ О5 (раств.), %	0.71 48,87 31.71 8.53	4,08	1,25	94,44	0,83	2,65	1,28	16,99
	HI	480	${\rm P}^{\rm 5}{\rm O}^{\rm 2^{\circ}}$ %	0,25 17,14 11.12 3,30	1,43	0,44	33,43	0,29	0,93	0,45	36,40
	100	250 °C	Р ₂ О ₅ /Р ₂ О5 (раств.), %	8,94 60,36 3,17 	1	22,57	85,10	0,56	0,32	4,79	99,11
			$b^{5}O^{2}$, %	3,36 22,68 1.19 	1	8,09	31,96	0,21	0,12	1,80	37,45
	5.	1000 °C	Р ₂ О ₅ /Р ₂ О5 (раств.), %	64,37 35,24 	1		35,24	1	1	1	99,61
	100		$P_{2}O_{5}, %$	28,52 15,61 	1	1	15,61	1	1	1	44,13
	110	650 °C	Р ₂ О ₅ /Р ₂ О5 (раств.), %	4,52 88,74 	1	5,38	94,12	1	1	1	98,64
			$P_2O_5, \%$	1,58 31,52 	1	1,92	33,44	1	1	1	35,02
	= 2,0	560 °C	Р ₂ О ₅ /Р ₂ О5 (раств.), %	 51,34 5,45	6,86	33,72	97,37	0,30	0,27	0,98	98,92
	R=		$P_2O_5, \%$	23,62	3,20	15,72	45,08	0,14	0,13	0,46	45,81
		480 °C	Р ₂ О ₅ /Р ₂ О5 (раств.), %	2,45 23,58 8,45 7,50	12,38	42,17	94,08	1,14	0,82	0,76	99,25
	te ke		b ⁵ O ² ' %	1,16 11,16 4,00 3,55	5,86	96,91	44.53	0,54	0,39	0,36	16,98 9
	RA	250 °C	Р ₂ О ₅ /Р ₂ О5 (раств.), %	26,70 62,18 	-	9,23	7.1.41	1	1	1,74	99,85 4
			b ⁵ O ² ' %	11,02 25,67 —	1	3,81	29,48	1	1	0,712	41,22
and	1010		фосфата	Орто- Пиро- Триполи- Тетраполи-	Пентаполи-	Высшие по- лифосфаты n>5	Полифос- фаты сум- марно	Тримета-	Тетрамета-	Пентамета-	Фосфаты суммарно

температуре 650° и R = 2,5-4,0 в спектрах появляются полосы поглощения, характеризующие присутствие фторапатита в образце (601, 1030, 1084 *см*⁻¹) [^{6,7}]. При 1000° спектры соответствуют спектру фторапатита, лишь при R = 2,0 сохраняется, наряду с фторапатитом, и β-пирофосфат (рис. 2).

Учитывая данные настоящей работы и полученные ранее [¹], а так же обнаружение в продуктах нагрева при 250—400° фосфорной кислоты, превращения, протекающие в низкотемпературной зоне (до 500— 550°), можно представить в виде следующей схемы:

1. Термическая дегидратация Ca (H₂PO₄)₂**:

$$Ca(H_2PO_4)_2 \longrightarrow CaHPO_4 + H_3PO_4 \tag{1}$$

** PFCa обозначает низкомолекулярный полифосфат кальция, включая кислый пирофосфат.

Рис. 2. ИК-спектры поглощения CaF₂ с H₃PO₄, нагретой в атмосфере сухого воздуха при различных температурах. 1 — R 2,0; 650 °C; 2 — R 3,0; 650°; 3 — R 2,0; 1000°; 4 — R 3,0; 1000°.

 $n \cdot H_3 PO_4 \longrightarrow H_{n+2} P_n O_{3n+1} + (n-1) H_2 O$ ⁽²⁾

 $CaHPO_4, Ca(H_2PO_4)_2 \longrightarrow PFCa + H_2O$ (3)

$$PFCa \longrightarrow [Ca(PO_3)_2]_n \tag{4}$$

2. Взаимодействие CaF₂ с более низкомолекулярными продуктами дегидратации Ca(H₂PO₄)₂:

 $CaF_2 + H_{n+2}P_nO_{3n+1} \longrightarrow PFCa + HF$ (5)

 $CaF_2 + PFCa_{KHC,TMR} \longrightarrow Ca_2P_2O_7 + HF$ (6)

 $CaF_2 + PFCa \longrightarrow Ca_2P_2O_7 + POF_3, PF_5$ (7)

В результате взаимодействия низкомолекулярных полифосфатов с CaF₂ при температурах ниже 500° полимеризация их до более высокомолекулярных линейных и циклических фосфатов протекает лишь в небольшой мере. Поэтому роль взаимодействия высокомолекулярного фосфата с CaF₂ в высокотемпературной зоне (выше 500°) по уравнениям

$$3n\mathrm{CaF}_2 + 5[\mathrm{Ca}(\mathrm{PO}_3)_2]_n \longrightarrow 4n\mathrm{Ca}_2\mathrm{P}_2\mathrm{O}_7 + 2n\mathrm{POF}_3 \tag{8}$$

$$5nCaF_{2} + 7[Ca(PO_3)_2]_n \longrightarrow 6nCa_2P_2O_4 + 2nPF_5$$
(9)

является относительно меньшей, чем в ранее изученной смеси CaF2 с метафосфатом кальция.

В результате этой особенности в высокотемпературной зоне выделяется в газовую фазу значительно меньше фтор- и фосфорсодержащих соединений.

Образовавшийся пирофосфат кальция реагирует в смесях с R>2 дальше с образованием фторапатита:

$$22CaF_2 + 24Ca_2P_2O_7 \longrightarrow 7Ca_{10}(PO_4)_6F_2 + 6PF_5$$
(10)

$$14CaF_2 + 18Ca_2P_2O_7 \longrightarrow 5Ca_{10}(PO_4)_6F_2 + 6POF_3$$
(11)

Кроме того, при температурах выше 480° наблюдается образование фторфосфатов кальция. Об этом свидетельствует следующее:

1. Появление в ИК-спектрах образцов, нагретых при 480-650°, полос поглощения при 748, 780, 1012, 1150 см-1, характерных для аниона PO₃F²⁻ [⁸⁻¹⁰].

2. Повышенная растворимость фторсодержащего компонента при обработке нагретых до этих температур смесей катионитом: 2,9—3,9% от общего содержания фтора, вместо 1,2% при обработке фторида кальция в этих же условиях.

3. Появление на хроматограммах новых двух пятен, из которых одно, расположенное между пятнами орто- и пирофосфатов, можно, по данным [11, 12] и рассчитанному коэффициенту подъема R_f [13], отнести к аниону PO3F2-, а второе (между пятнами пиро- и триполифосфатов) к конденсированному фторфосфатному аниону или аниону PO2F-.

ЛИТЕРАТУРА

- 1. Кальювее Т. Б., Пылдме М. Э., Вейдерма М. А. Взаимодействие фторида кальция с конденсированными фосфатами при нагреве. — Изв. АН СССР.
- Heopr. мат-лы, 1979, т. 15, № 12, с. 2188—2191.
 2. Bernhart, D. N., Chess, W. B. Quantitative evaluation of paper chromatograms of condensed phosphates mixtures. Analyt. Chem., 1959, v. 31, N 6, p. 1026-1028.
- 3. Biberacher, G. Die Papierchromatographie der Amido- und Imidophosphate. Z. anorgan. und allgem. Chem., 1956, Bd. 285, S. 86—91.
- 4. Rössel, T., Kiesslich, H. Die chromatographische Analyse von Phosphaten. Rossel, I., Kiessiich, H. Die chromatographische Analyse von Phosphaten. III. Weitere Erkenntnisse über die quantitative Papierchromatographie konden-sierter Phosphate. — Z. analyt. Chem., 1967, Bd. 225, S. 391—402.
 Beйдерма М. А., Пылдме Ю. У. Состав продуктов термической дегидрата-ции монокальцийфосфата. — ЖНХ, 1976, т. 21, с. 10—15.
 Crystallographic properties of fertilizer compounds. (Chem. Engng Bull., TVA, Muscle Shoals.) Alabama, 1967.
 Corbridge, D. E. C. The structural chemistry of phosphorus. Amsterdam — London — New York, 1974.
 Hukonguta F. H. Baaumonguerung Ba(POc), a dropungation — WHV, 1076, т. 21.

- 8. Николина Г. П. Взаимодействие Ва(PO3)2 с фторидами. ЖНХ, 1976, т. 21, вып. 2, с. 335—338.
- Николина Г. П., Халилев В. Д. Продукты взаимодействия метафосфата и фторида бария. Изв. вузов. Сер. хим., 1975, т. 18, с. 1263—1266.

- Bühler, K., Bues, W. Schwingungsspektren von Fluorophosphatschmelzen und -kristallen. Z. anorgan. Chem., 1961, Bd. 308, S. 62—71.
 Grunze, H., Grunze, I. La préparation et les propriétés des fluorophosphates condensés. Bull. Soc. chim. France, 1968, p. 1675—1677.
 Grunze, H., Neels, J., Grunze, I. Darstellung und Eigenschaften oligo-merer Difluorophosphate. Z. anorgan. Chem., 1973, Bd. 400, S. 137—147.
 Grunze, H., Thilo, E. Die Papierchromatographie der kondensierten Phos-phate. (Sitzungsber. Dtsch. Akad. Wiss. Berlin, Kl. Math. und allgem. Natur-wiss.) Berlin, 1954.

Таллинский политехнический институт

Поступила в редакцию 23/XI 1979

T. KALJUVEE, M. POLDME, M. VEIDERMA

KALTSIUMFLUORIIDI JA MONOKALTSIUMFOSFAADI DEHÜDRATATSIOONI PRODUKTIDE SEGU KUUMUTAMISEGA KAASNEVAD FÜÜSIKALIS-KEEMILISED MUUTUSED

Infrapunase spektroskoopia ning röntgen- ja paberkromatograafilise analüüsi teel on uuritud CaF₂ ja Ca(H₂PO₄)₂ dehüdratatsiooni produktide segudes (CaO/P₂O₅ moolsuhe 2,0—4,0) kuumutamisel temperatuurini 1000°C esinevaid füüsikalis-keemilisi muutusi. Kuumutamise vahestaadiumides (480—650 °C) tekivad kondenseeritud polü- ja tsüklili-sed fosfaadid, tõenäoline on ka fluorofosfaatide teke; lõpp-produktides esinevad (CaO/P₂O₅ väärtusest sõltuvalt) β -Ca₂P₂O₇ ja fluorapatiit või fluorapatiit reageerimata CaF₂ jäägiga.

T. KALJUVEE, M. POLDME, M. VEIDERMA

PHYSICO-CHEMICAL CHANGES IN THE MIXTURES OF CALCIUM FLUORIDE WITH DEHYDRATATION PRODUCTS OF MONOCALCIUM PHOSPHATE BY THERMAL TREATMENT

The physico-chemical changes in the mixtures of CaF_2 with dehydratation products of $Ca(H_2PO_4)_2$ (at the mole ratio CaO/P_2O_5 from 2.0 to 4.0) by heating to 1000 °C were

studied by IR-spectroscopy, X-ray diffraction and paper chromatography methods. At temperature ranges from 480° to 650°, condensed poly- and cyclic phosphates are formed, and probably fluorophosphates, too. Depending on the value of CaO/P₂O₅ in the mixture, the final products contain β -Ca₂P₂O₇ and fluorapatite or fluorapatite with the nonreacting residue of CaF₂.