EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 28. KÕIDE KEEMIA, 1979, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 ХИМИЯ. 1979, № 3

И. ШЕВЧУК УДК 541.141.8 : 547.681 : 547.567.2 : 547.565.2

ФОТОИНИЦИИРОВАННОЕ СООКИСЛЕНИЕ БЕНЗ(а) ПИРЕНА С л-БЕНЗОХИНОНОМ И ПИРОКАТЕХИНОМ

I. SEVTŠUK, BENSO(a)PÜREENI, p-BENSOKINOONI JA PÜROKATEHHIINI FOTOINITSIEERITUD KOOSOKSÜDEERIMINE

I. SHEVCHUK, PHOTOINDUCED CO-OXIDATION OF BENZO(A)PYRENE WITH p-BENZOQUINONE AND CATECHOL

Представлена М. Губергрицем

Ранее установлено взаимное влияние двух классов биологически активных соединений — фенолов и полициклических ароматических углеводородов (ПАУ) — на процессы фотоинициированного окисления [¹]. Промежуточными продуктами окисления фенола, простейшего из членов гомологического ряда, принято считать пирокатехин; в их числе идентифицирован также n-бензохинон [2].

В настоящей работе изложены результаты изучения кинетики раз-

Таблица 1

Влияние п-бензохинона и пирокатехина на относительную скорость фотоинициированного окисления БП

)а- 1ВКИ, 1∂/Л	<i>v</i> _{БП+добавка} / <i>v</i> _{БП}					
Концент ция доба 10-4 мол	<i>п</i> -Бензо- хинон *	Пирока- техин **				
0.5	1.10	And Barris and				
0,5	1,19	1.06				
2	1.96	1,00				
3	101 1-01	0,94				
5	2,57	0,95				
7,5	- 19	1,08				
10	E	0,90				

* Концентрация БП 1.10-4 моль/л, скорость 1,02·10⁻⁵ моль/л·ч. окисления * Концентрация БП 5.10-4 моль/л, скорость окисления 2,34.10-5 моль/л.ч.

дельного и совместного окисления типичного представителя канцерогенного ПАУ --бенз (а) пирена (БП) — в бинарных смесях с пирокатехином или с п-бензохиноном, инициированного полихроматическим излучением ртутной лампы сверхвысокого дав-ления СВД-120 в диапазоне выше 200-210 нм и с максимумом испускания при 365 нм [3]. Эксперимент проведен с растворами БП в 96%-ном водном этаноле (концентрация БП 1.10-4 моль/л и 5.10-4 моль/л, температура 20±1°С, при доступе кислорода и варьировании концентрации второго компонента в пределах, указанных в табл. 1). Использовались чистый БП фирмы «Fluka AG» (Швейцария); пирокатехин и п-бензохинон х. ч., дополнительно очищенные сублимацией. Содержание в растворе БП определялось спектрофотометрически по поглощению при 385 *нм* с учетом фона, содержание пирокатехина [⁴] и *n*-бензохинона [⁵] — колориметрически по реакции с 4-аминоантипирином. Во всех случаях снижение концентрации основного вещества протекает линейно до его 40% конверсии, и кинетическим показателем реакции служит ее начальная скорость,

Таблица 2

Скорость фотоинициированного раздельного окисления <i>п</i> -бензохинона (Бх) и в присутствии БП (концентрация БП 1·10 ⁻⁴ моль/л)			15	Скорость фотоинициированного раздельного окисления пирокатехина (П) и в присутствии БП (концентрация БП 5·10 ⁻⁴ моль/л)					
Концентра- ция Бх, 10-4 <i>моль/л</i>	^U _{Bx} , 10 ⁻³ <i>Mo.Ab/A</i> ·4	⁰ Бх+БП ³ 10 ⁻³ моль/л.ч	$v_{\mathrm{Bx+B\Pi}}/v_{\mathrm{Bx}}$	EX.	50, X 10, X	Концентра- ция П, 10 ⁻⁴ моль/л	v_{Π} , $u_{0,n_b/n}$	¢п+вп, 10-4 моль/л∙ч	°п+вп /г п
0,5 1 2 5	0,97 1,86 2,99 5,39	0,37 0,75 1,37 3,15	0,38 0,40 0,46 0,58	41	based	3 5 7,5 10	4,31 5,80 7,10 7,80	0,82 1,04 1,44 1,83	0,19 0,18 0,20 0,23

Добавка п-бензохинона и пирокатехина к БП (табл. 1) оказывает различное действие на его деградацию: первый из них ощутимо увеличивает, а второй практически не изменяет скорость превращения БП. Напомним, что, по данным [1], наличие собственно фенола в эквимолярной смеси с БП при концентрации его 1.10-4 моль/л способствует ускорению фотоокисления этого ПАУ в 1,7 раза. Следует учесть, что скорость окисления *n*-бензохинона (табл. 2) в присутствии БП на два порядха превышает скорость как раздельного, так и совместного с ним окисления БП. Следовательно, на ускоряющее действие *n*-бензохинона влияют продукты его окисления. Окисление *n*-бензохинона и пирокатехина ингибируется БП (табл. 2, 3).

Таким образом, можно полагать, что сенсибилизирующее влияние фенола при окислении БП объясняется ускоряющим действием самого фенола и продуктов его окисления.

ЛИТЕРАТУРА

- 1. Кару Т., Кирсо У., Губергриц М. Кинетика фотоинициированного соокисления бенз (а) пирена и фенолов разного строения. — Изв. АН ЭССР. Хим. Геол., 1973, т. 22, № 3, с. 217—223.
- 2. Каплан В. Т., Перельштейн Е. И., Фесенко Н. Т. О механизмах самоочищения поверхностных вод суши от фенольных соединений. Сообщ. 1. Окисление простейшего фенола (карболовой кислоты) кислородом воздуха. — Гид-рохим. материалы, 1966, т. 42, с. 274—286. 3. Агросник Л. С. Сравнение яркостей некоторых источников для ультрафиолето-
- вой микроскопин. Биофизика, 1957, т. 2, вып. 4, с. 518—519.
- Кирсо У. Определение различных фенолов реакцией с 4-аминоантипирином. Изв. АН ЭССР. Хим. Геол., 1977, т. 26, № 1, с. 22—27.
 Thielemann, H. Zum Nachweis von *p*-Benzochinon mit 1-Phenyl-2,3-dimethyl-4-aminopyrazolon-(5). Pharmazie, 1969, Bd. 24, N 8, S. 483—484.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 18/I 1979

Таблица 3