EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 28. KOIDE KEEMIA. 1979, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 ХИМИЯ. 1979, № 3

https://doi.org/10.3176/chem.1979.3.11

УЛК 661.634.2+631.893

Э. ААСАМЯЭ, М. ВЕЙДЕРМА, Анне РЕБАНЕ

ИССЛЕДОВАНИЕ ПОЛУЧЕНИЯ ФОСФОРНОЙ КИСЛОТЫ И СЛОЖНЫХ УДОБРЕНИЙ ИЗ ФОСФОРИТОВ МЕСТОРОЖДЕНИЯ АЗЕРИ

В настоящей статье представлены результаты исследования процесса сернокислотной экстракции фосфорной кислоты (ЭФК) из фосфоритов Азери и переработки полученной ЭФК в аммофос и нитроаммофоску. Исследованные флотационные концентраты фосфорита Азери (7 обр.) различались по содержанию как P₂O₅ (23,5—30,1%), так и примесей (соединения магния, железа и др.). Подробная характеристика проб фосфорита приведена в [¹].

Получение ЭФК. Использовался описанный ранее [²] циклический метод имитации непрерывного процесса с трехкратной промывкой фосфогипса. Экстракция проводилась по дигидратному режиму, обычно при 75 °C; с двумя пробами фосфорита — также при 90° (таблица). Количество серной кислоты составляло 100—107% от стехиометрической нормы на осаждение кальция, продолжительность экстракции 5 ч, отношение жидкая фаза : твердая фаза (Ж: Т) = 2,5:1.

Показатели процесса экстракции во многом зависят от состава жидкой фазы пульпы. С повышением содержания Р₂O₅ до 15—20% наблюдалось улучшение основных показателей процесса: уменьшение пеновыделения при дозировке фосфорита, повышение степени извлечения

Р₂О₅, увеличение скорости фильтрации при промывке фосфогипса и уменьшение влажности промытого фосфогипса.

Дальнейшее повышение концентрации ЭФК (>15—20%) приводило к ухудшению извлечения P₂O₅ и уменьшению скорости фильтрации, а также к увеличению расходного коэффициента водородного иона кислоты.

Рис. 1. Изменение показателей процесса экстракции H_3PO_4 из фосконцентрата 7 в зависимости от содержания P_2O_5 в жидкой фазе при 75 °С (сплошная линия) и 90 °С (пунктир). *I* — расход H⁺-иона на 100 г растворенного P_2O_5 ($P_{\rm H}$ ⁺), г; 2 — коэффициент разложения фосфорита (K_p), %; 3 — скорость фильтрации при промывке фосфогипса (W_f), $m^3/m^2 \cdot q$.

			2-2-			1			
States and to go the	Температура экстракции 75 °С							90 °C	
Показатели	Номер образца фосконцентрата								
	1	2	3	4	5	6	7	6	7
1	2	3	4	5	6	7	8	9	10
		I. По	лучени	e ЭФК					
	a) (pa			0 0000					
Users U.CO. W. sa	a) Cpe	дние да	инные і	IO BCCM	циклая				
норма H ₂ SO ₄ , % от сте- хиометрии на CaO	107	103	100	102	102	104	103	100.	100
Гипсовое число Расходный коэффициент	1,35	1,37	1,39	1,38	1,44	1,46	1,45	1,44	1,44
H ₂ SO ₄ на 1 г растворен-	3.91	3.03	9.99	9.70	9.75	3.04	2.07	9.02	9.09
noro r ₂ 05, c	0,21	5,05	2,02	2,70	2,10	5,04	5,07	2,90	2,92
	б) Да	нные пр	ри конц	центрац	ии ЭФН	₹ 20%	P_2O_5		
Степень извлечения P ₂ O ₅ ,	98.6	08.8	00 3	00.6	08 5	000	07.9	04.3	02.6
Скорость фильтрации при	50,0	50,0	33,0	33,0	50,0	33,0	51,2	54,0	52,0
промывке фосфогипса, $m^3/m^2 \cdot u$	1,4	1,4	1,25	1,35	1,85	2,0	2,2	2,2	1,8
Содержание гигроскопич- ной влаги в фосфогипсе									
% Paavonuur vootte	37,9	42,6	49,6	50,8	41,9	42,4	42,2	33,0	30,0
Н+-иона на 100 г раство-			obilities		01000				
ренного Р ₂ О ₅ , г	4,84	4,60	4,19	3,87	4,19	4,56	4,60	4,96	4,89
	в) С	остав Э	ФК по	следнег	о цикла				
Содержание, %			~ ~ ~				~ ~ ~	~	~ ~ ~
P ₂ O ₅ H ⁺	23,6 0,348	24,2 0,371	24,9 0,388	26,1 0,372	26,0 0,381	25,6 0,370	24,7 0,393	21,4 0,262	21,0 0,274
Отношение масс	0 151	0 1 2 0	0.081	0.065	0.078	0.198	0 194	0.097	0.113
$SO_3 : P_2O_5$	0,280	0,230	0,162	0,082	0,107	0,222	0,280	0,1/26	0,155
Ре2О3: Р2О5 Общая степень нейтрали-	0,047	0,044	0,037	0,038	0,025	0,044	0,045	0,041	0,044
зации, %	38,0	31,9	24,9	23,6	23,8	33,9	31,0	38,1	35,1
		II. Пол	учение	аммоф	oca				
Содержание в продукте	612-246		iligi -						
% Усвояемый РоОс	42.3	45.0	491	51.4	50.7	45.5	45.1	_	_
Водорастворимый Р2О5	36,0	41,6	44,3	46,8	45,7	41,3	40,4	-	-
Сумма питательных ве	-	11,5	12,0	12,0	11,7	11,4	11,2	-	-
ществ Мольное отношение	53,3	56,5	61,7	63,4	62,4	56,9	56,3	-	-
NH_3 : H_3PO_4	1,31	1,32	1,33	1,18	1,17	1,28	-1,29	-	-
	Ш	Получ	ение н	итроами	иофоски	4			
Характеристика образно	в		ingon .						
упаренной ЭФК	40.5	51.4	50.6	53.0	51.4	59 5	50.9		
Отношение масс	0.001	0.000	0.094	0.060	0.079	0.107	0.100	-	
MDU PoUs	0.08	0.092	0.084	0.002	0.078	0.121	0.120		-

Результаты экспериментов

Э. Аасамяэ, М. Вейдерма, Анне Ребане

1	2	3	4	5	6	7	8	9	10
SO3 : P2O5	0.155	0.192	0.162	0.078	0.111	0.210	0.255	_	_
Содержание в продукте, %	-,			0,010	0,111	0,210	0,200		
Усвояемый Р2О5	18,6	16.2	16,7	17.6	17.0	15.9	16,6	_	-
Водорастворимый Р2О5	17,3	15,2	15.8	16,5	16,0	15,3	15,9		-
Водорастворимый азот	17,0	17,1	16,8	17,5	17,1	15,5	17,0	-	
Водорастворимый К2О	20,0	16,9	17,9	18,8	17,3	18,4	16,2		-
Сумма питательных ве-									
ществ	55,6	50,2	51,4	53,9	51,4	49,8	49,8	-	-
Влага	0,2	0,6	0,3	0,2	0,3	1,3	1,1	-	

Особо значительное ухудшение показателей процесса наблюдалось в опытах с пробами фосфорита 6 и 7 при увеличении концентрации продукционной кислоты от 20 до 23—25% (рис. 1). Микроскопическим изучением кристаллов фосфогипса установлено, что ухудшение показателей процесса экстракции с повышением концентрации H₃PO₄ вызвано образованием скоплений из более мелких кристаллов гипса. Дополнительные опыты с указанными пробами показали возможность улучшения фильтруемости фосфогипса проведением экстракции при повышенном отношении Ж: Т с одновременным снижением нормы H₂SO₄. Однако извлечение P₂O₅ при этом было более низким.

Экстракция H₃PO₄ при повышенной температуре (90°) способствовала улучшению фильтруемости фосфогипса при концентрации жидкой фазы до 20% P₂O₅, но по извлечению P₂O₅ и расходу H⁺-иона кислоты наблюдалось ухудшение по сравнению с обычным температурным режимом (рис. 1).

Отмывка фосфогипса была практически полной во всех опытах. Содержание кристаллизационной воды в высушенном при 80° фосфогипсе составляло 17—20%, что приблизительно соответствует составу CaSO₄·2H₂O. Из примесей фоссырья фтор переходил в жидкую фазу обычно на 35—45%, непиритное железо растворялось практически полностью (пирит не разлагается), а магний — на 80—95%.

В пробах продукционной кислоты, содержащих 21—26% P₂O₅, отношение масс Fe₂O₃: P₂O₅= =0,025—0,05, MgO: P₂O₅=0,06— 0,16, а общая степень нейтрализации [²] находилась в пределах 22—39%. Наибольшая степень нейтрализации наблюдалась у образцов кислоты, полученных из концентратов с максимальным содержанием MgO. ЭФК аналогичного качества возможно получить

Рис. 2. Зависимость качественных показателей аммофоса от содержания примесей в применяемой фосфорной кислоте. *1* и 2 — содержание, соответственно, усвояемого и водорастворимого P₂O₅ в опытных образцах аммофоса. Горизонтальные линии обозначают минимальное содержание усвояемого (сплошная линия) и водорастворимого (пунктир) P₂O₅ в аммофосе по ГОСТ 18918-73 для марок «А» и «Б».

206

из фосфоритов месторождений Кингисепп, Чилисай, а также из фосфоритов Каратауского бассейна [³].

Получение аммофоса. Методика исследования описана ранее [²]. В качестве сырья использовались образцы неупаренной ЭФК, полученные в обычном дигидратном режиме. Аммонизация ЭФК проводилась до pH 5. Пробы готового порошковидного аммофоса (таблица) мало различались по содержанию азота, но наблюдались значительные колебания в содержаниях усвояемого и водорастворимого P_2O_5 : соответственно, 42—51 и 36—47%. Указанные колебания обусловлены различным содержанием в образцах как примесей железа и магния, вызывающих ретоградацию усвояемых форм P_2O_5 при аммонизации, так и связанного с магнием балластного сульфат-иона. Мольное соотношение $NH_3: H_3PO_4$ в пробах аммофоса колебалось в диапазоне 1,17—1,33, повышаясь с увеличением содержания примесей в ЭФК.

На основе проведенных экспериментов могут быть установлены требования к качеству исходной фосфорной кислоты и фосфорита. Для получения стандартного аммофоса марки «А» или «Б» (ГОСТ 18918-73) отношение массы примесей (MgO+Fe₂O₃+SO₃) к массе P_2O_5 в ЭФК не должно превышать, соответственно, 20 и 40% (рис. 2), а для фосконцентратов (при экстракции H₃PO₄ по обычному дигидратному режиму) отношение примесей (MgO + растворимый Fe₂O₃) к $P_2O_5 - 12$ и 17% (рис. 3).

Получение нитроаммофоски (НАФК). Был испробован вариант получения НАФК уравновешенного состава аммонизацией смеси фосфорной и азотной кислот. Использовались образцы ЭФК, полученные по обычному дигидратному режиму (см. выше) и упаренные до концентрации 49,5—53,0% P₂O₅. В процессе упарки происходило обесфторивание ЭФК на 50—80%, а пробы упаренной кислоты при остывании загустевали. Аналогичное явление наблюдалось при упаривании ЭФК из каратауских фосфоритов, что было вызвано в основном осаждением фторида магния [⁴]. В наших экспериментах текучими при комнатной температуре

только пробы оставались ЭФК, у которых отношение MgO: P2O5 перед упаркой не превышало 0,08. Переработка этих проб после смешивания с 50%-ной азотной кислотой протекала без особых затруднений. Использование сильно загустевших проб ЭФК стало возможным только после их ожижения методом механического смешения и подогрева до температуры 50-65°, а также при использовании более разбавленной (41%-ной) азотной кислоты.

Аммонизация смеси кислот производилась газообразным

Рис. 3. Зависимость качественных показателей аммофоса от содержания примесей в исходном фосфорите. (Обозначения см. на рис. 2).

Рис. 4. Зависимость суммарного содержания питательных элементов (ПЭ) в нитроаммофоске от содержания примесей в применяемой фосфорной кислоте. Горизонтальной линией обозначено минимальное содержание ПЭ в нитроаммофоске по ГОСТ 19691-74.

аммиаком в реакторе, снабженном лопастной мешалкой, при поддерживании температуры пульпы 90°. Аммонизированная пульпа упаривалась на водяной бане до кашеобразной консистенции, добавлялся измельченный хлористый калий (частицы — 0,5 мм)

и затем полученная масса высушивалась при температуре не более 90°.

Качество конечного продукта во многом зависит от степени аммонизации смеси кислот. Было установлено, что при аммонизации до pH 5 реакционная масса плохо сушится, сухой продукт трудно измельчается и весьма гигроскопичен. При нейтрализации до pH 6,5—7,0 указанных трудностей не наблюдалось. Поэтому в основной серии опытов проводилась аммонизация до данного pH, с использованием смеси кислот с мольным отношением N: P₂O₅=1:3.

Результаты анализа проб готовой НАФК (таблица) показывают, что из всех проб упаренной ЭФК при соответствующем регулировании количества реагентов можно получать продукты, отвечающие требованиям ГОСТ 19691-74 по отдельным питательным веществам. Однако сумма питательных веществ в трех опытах, где пробы ЭФК в наибольшей степени были загрязнены балластным сульфатом магния, приблизительно на 1% (абс.) ниже требуемой стандартом. Получение стандартного продукта возможно только при использовании таких проб упаренной ЭФК, у которых отношение массы примесей (MgO, Fe₂O₃ и SO₃) к массе P₂O₅ не превышает 25—27% (рис. 4).

В пробах НАФК 85—91% от общего Р₂О₅ находится в водорастворимой форме, а 30—40% от азота — в нитратной форме. Они гигроскопичны и могут выпускаться лишь в гранулированном и кондиционированном виде.

Результаты настоящего исследования показывают, что лучшие образцы фосконцентратов Азери могут быть использованы при получении аммофоса и нитроаммофоски. Показатели процессов и качество продуктов зависят в основном от содержания примесей магния и железа в используемом фоссырье. Так как содержание растворимого железа в фосконцентратах приблизительно одинаково, то общее требование к содержанию примесей можно сформулировать по отношению MgO : P₂O₅, которое не должно превышать 10—13%.

В сравнении с тоолсескими фосфоритами, фосконцентраты Азери являются менее качественным сырьем для производства минеральных удобрений — их переработка связана с большими трудностями, а технико-экономические показатели переработки и качество продуктов более низкие. При наличии рядом более крупного месторождения Тоолсе с более качественной фосфоритной рудой использование фосфоритов Азери в ближайшее время представляется вряд ли целесообразным. Однако, поскольку у месторождения Азери имеются перспективы, необходимо проводить работы по более эффективному обогащению и облагораживанию этих фосфоритов.

ЛИТЕРАТУРА

- Аасамяэ Э., Вейдерма М., Ребане А. Исследование переработки фосфоритов месторождения Азери в двойной суперфосфат. — Изв. АН ЭССР. Хим., 1979. т. 28. № 3. с. 198—203.
- 1979, т. 28, № 3, с. 198—203. 2. Аасамяэ Э. Э., Вейдерма М. А., Вескимяэ Х. И. Получение экстракционной Н₃РО₄ и аммофоса из термически обработанных фосфоритов бассейна Каратау. — Хим. пром-сть, 1974, № 10, с. 756—759.
- атау. Хим. пром-сть, 1974, № 10, с. 756—759. 3. Соколовский А. А., Унанянц Т. П. Краткий справочник по минеральным удобрениям. М., 1977.
- 4. Позин М. Е., Варшавский В. Л., Одинцова Г. С., Вашкевич Н. Г. К вопросу о механизме загустевания магнийсодержащей фосфорной кислоты. — В кн.: Технология минеральных удобрений. Л., 1977, с. 3—10.

Таллинский политехнический институт

Поступила в редакцию 1/0/XI 1978

E. AASAMAE, M. VEIDERMA, Anne REBANE

EKSTRAKTSIOONFOSFORHAPPE JA LIITVÄETISTE SAAMINE ASERI LEIUKOHA FOSFORIIDIST

On käsitletud ekstraktsioonfosforhappe saamist dihüdraadimeetodil ning saadud happe töötlemist ammofossiks ja nitroammofoskaks. Ekstraktsiooniprotsess kulgeb normaalselt, kui P_2O_5 sisaldus produktsioonhappes ei ületa 20-22%. Standardse ammofossi ja nitro-ammofoska saamiseks peab kasutatavas fosforiidikontsentraadis massisuhe MgO: P_2O_5 olema alla 10%.

E. AASAMÄE, M. VEIDERMA, Anne REBANE

OBTAINING WET-PROCESS PHOSPHORIC ACID AND COMPLEX FERTILIZERS FROM ASERI PHOSPHORITE

Receiving phosphoric acid by the dihydrate process at 75 and 90 °C from flotation concentrates of Aseri phosphorite (Estonian SSR) and production of monoammonium phosphate and NKP-fertilizer (nitroammophoska) from this acid have been studied. The concentration of wet-process acid as high as 20-22% P₂O₅ has been established as optimal. For receiving conditional fertilizers mentioned above, the content of MgO in the phosphorite should not exceed the weight ratio MgO: P₂O₅=0.10-0.13.