ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 ХИМИЯ. 1979, № 3

УДК 547.5: 543.544.25

Айме МЕЙСТЕР, Сильвия РАНГ, О. ЭЙЗЕН

ИССЛЕДОВАНИЕ АДСОРБЦИИ ЦИКЛИЧЕСКИХ УГЛЕВОДОРОДОВ НА ГРАФИТИРОВАННОЙ ТЕРМИЧЕСКОЙ САЖЕ

В статье [¹] рассмотрены закономерности изменения $-\overline{\Delta U_1}$ (дифференциальных мольных изменений внутренней энергии адсорбата) в зависимости от молекулярной структуры *н*-алканов, *н*-алкенов и *н*-алкинов C_6 — C_{10} на графитированной термической саже (ГТС). В настоящей работе приводятся аналогичные данные для монозамещенных алкилциклопентанов, -пентенов, -гексанов и -гексенов C_6 — C_{11} .

Необходимые значения — $\overline{\Delta U_1}$ для *н*-алканов рассчитаны по уравнению — $\overline{\Delta U_1} = 10,63 + 4,98$ *п* кДж/моль (табл. 2 [¹]). На основе полученных результатов с помощью уравнения (3) [¹] вычисленные величины — $\overline{\Delta U_1}$ для циклических углеводородов сведены в табл. 1. Данные табл. 1 показывают, что существует линейная зависимость между значениями — $\overline{\Delta U_1}$ и числом атомов углерода в молекуле, которая описывается уравнением

$$-\overline{\Delta U_1} = a_0 + a_1 n. \tag{1}$$

Значения констант a_0 и a_1 рассчитаны методом наименьших квадратов (табл. 2).

При равном числе атомов углерода в молекуле для *н*-алкилциклопентанов и -пентенов характерны более высокие значения индексов удерживания (*I*), изостерических теплот адсорбции ($q_{st, 1}$) и — $\overline{\Delta U}_1$ по сравнению с соответствующими соединениями с шестичленными циклами.

Разветвление боковой цепи приводит к понижению значений I, $q_{st,1}$ и $-\Delta U_1$ по сравнению с соответствующими углеводородами с нормальной алкильной группой у цикла. Это объясняется уменьшением числа контактирующих центров между углеводородом и ГТС при разветвлении заместителя. Так, изобутилциклогексан и изобутилциклогексен обладают более низкими значениями $q_{st,1}$ и $-\Delta U_1$, чем *н*-бутилзамещенные про-изводные этих углеводородов.

Значения *I*, $q_{st,1}$ и — $\overline{\Delta U_1}$ изученных циклопентенов и циклогексенов зависят от длины и положения заместителя. По мере удаления боковой цепи от кратной связи циклопентенового цикла — из положения 1 в положение 3 — значения *I* для метил-, этил- и пропилциклопентенов уменьшаются, для бутил-, пентил- и гексилциклопентенов увеличиваются, а значения $q_{st,1}$ и — $\overline{\Delta U_1}$ уменьшаются для всех гомологов.

В группе изомерных н-алкилциклогексенов при равном числе атомов

Таблица 1

Дифференциальные мольные изменения внутренней энергии адсорбции ($-\overline{\Delta U}_1$) для алкилциклоалканов и алкилциклоалкенов C₆--C₁₁ на ГТС при малом заполнении поверхности, кДж/жоль *

		(Langel)	$-\overline{\Delta U}$, кДж	/моль	-		
Название адсорбата	Температура, °С							ee 3H2
Charles Marine Street	100 и 125	125 и 150	150 и 175	175 и 200	200 и 225	225 и 250	250 и 275	Средне чение кДж/м
1	2	3	4	5	6	7	8	9
Метилциклопентан Этилциклопентан и-Пропилциклопентан и-Бутилциклопентан и-Пентилциклопентан и-Гексилциклопентан	35,58	35,06 41,42	40,56 48,64	47,90 50,83	51,52 56,90	56,24 62,09	61,88	35,32** 40,99 48,27 51,18 56,57 61,99
Метилциклогексан Этилциклогексан н-Пропилциклогексан Изопропилциклогексан н-Бутилциклогексан Изобутилциклогексан Втор. бутилциклогексан н-Гексилциклогексан	38,77	40,05	43,97 47,62	43,69 48,00 48,22	50,76 55,74 52,10 53,64	56,80 51,48 52,22	65,48	39,41** 43,83 49,38 47,92 56,27 51,79 52,93 65,48
1-Метил-1-циклопентен 3-Метил-1-циклопентен 1-Этил-1-циклопентен 3-Этил-1-циклопентен 1-и-Пропил-1-циклопентен 3-и-Пропил-1-циклопентен 1-Изопропил-1-циклопентен 3-Изопропил-1-циклопентен 1-и-Бутил-1-циклопентен 1-и-Бутил-1-циклопентен 1-и-Пентил-1-циклопентен 3-и-Пентил-1-циклопентен 1-Изобутил-1-циклопентен 1-Изопентил-1-циклопентен 1-Изопентил-1-циклопентен 1-Изопентил-1-циклопентен 1-Изопентил-1-циклопентен 1-и-Гексил-1-циклопентен 3-и-Гексил-1-циклопентен	40,26 35,49	40,48 35,73 42,82 41,37	43,30 41,49 48,51 46,33 45,59 45,58	47,67 45,64 44,79 51,93 50,88 47,92	52,03 50,85 47,86 57,70 55,38 54,75	56,59 54,89 53,68 61,22 60,99	61,71 60,85	$\begin{array}{r} 40,37\\35,61\\43,06\\41,43\\48,09\\45,99\\45,59\\45,19\\51,98\\50,87\\47,89\\57,15\\55,14\\54,22\\61,47\\60,92\end{array}$
Циклогексен 1-Метил-1-циклогексен 3-Метил-1-циклогексен 4-Метил-1-циклогексен 3-Этил-1-циклогексен 3-Этил-1-циклогексен 4-Этил-1-циклогексен 1-н-Пропил-1-циклогексен 3-н-Пропил-1-циклогексен 4-н-Пропил-1-циклогексен 3-Изопропил-1-циклогексен 1-Аллил-1-циклогексен 1-Аллил-1-циклогексен 1-н-Бутил-1-циклогексен 3-Аллил-1-циклогексен 4-н-Бутил-1-циклогексен 4-н-Бутил-1-циклогексен 4-н-Бутил-1-циклогексен 4-н-Бутил-1-циклогексен 4-н-Бутил-1-циклогексен 4-н-Бутил-1-циклогексен 4-н-Бутил-1-циклогексен 4-н-Бутил-1-циклогексен 4-н-Бутил-1-циклогексен 4-н-Бутил-1-циклогексен 4-н-Бутил-1-циклогексен 4-н-Бутил-1-циклогексен 4-н-Бутил-1-циклогексен	37,31	36,80 42,32 39,51 42,14	43,27 40,12 42,69 44,76 45,44 47,26 47,11	45,47 44,41 45,94 45,74 48,07 48,00 49,78	49,66 50,55 50,99 47,53 49,88 50,01 54,05 54,50 56,54 51,18 53,05	49,86 50,92 50,88 53,43 54,43 55,85 52,51		$\begin{array}{c} 37,06^{**}\\ 42,80\\ 39,82\\ 42,42\\ 45,12\\ 44,93\\ 46,60\\ 49,76\\ 50,74\\ 50,94\\ 46,64\\ 48,98\\ 47,56\\ 49,90\\ 53,74\\ 54,47\\ 56,20\\ 51,85\\ 53,05\\ \end{array}$

Исследование адсорбции циклических углеводородов....

SUPERION & MOREKVIC ARA	2	3	4	5	6	7	8	9
1-Втор. бутил-1-циклогексен 3-Втор. бутил-1-циклогексен 1-н-Пентил-1-циклогексен 3-н-Пентил-1-циклогексен	A d y	TAT	Adaption of the second	10101	53,88 51,75	50,64 52,98 58,71 59,96	65,49 60,91	52,26 52,37 62,10 60,44

* Вычислены по индексам удерживания [2].

** — $\overline{\Delta U_1}$, по литературным данным [³]: для метилциклопентана 31,3, метилциклогексана 35,8, циклогексена 33,3 *кДж/моль*.

углерода в молекуле зна-

чения I, $q_{st, 1}$ и — $\overline{\Delta U}_1$ увеличиваются в порядке: 1-, 3- и 4-*н*-алкил-1-циклогексены.

Величины $-\overline{\Delta U}_1$ для изученных соединений могут быть рассчитаны из значений $-\overline{\Delta U}_1$ соответствующих *н*-алканов по следующим уравнениям:

Константы	уравнения	(1) для	циклоалканов
	и цикло	алкенов	

Гомологический ряд	a ₀	<i>a</i> ₁	
 н-Алкилциклопентаны С₆—С₁₁ н-Алкилциклогексаны С₇—С₁₂ Изоалкилциклогексаны С₉—С₁₀ 1-н-Алкил-1-циклопентены С₆—С₁₁ 3-н-Алкил-1-циклопентены С₆—С₁₀ 1-Изоалкил-1-циклопентены С₈—С₁₀ 1-н-Алкил-1-циклогексены С₇—С₁₀ 4-н-Алкил-1-циклогексены С₇—С₁₀ 	$\begin{array}{r} 4,61\\ 1,67\\ 13,09\\ 13,52\\ 6,42\\ 10,40\\ 4,38\\ 10,21\end{array}$	5,23 5,35 3,87 4,33 4,93 4,32 5,08 4,57	

<i>н</i> -алкилциклопентаны: $-\overline{\Delta U}_1 = -\overline{\Delta U}_1_{H-алкан} - 1,47 + 0,05 n,$
<i>н</i> -алкилциклогексаны: $-\overline{\Delta U}_1 = -\overline{\Delta U}_1_{\text{и-алкан}} - 2,43 + 0,08 n,$
изоалкилциклогексаны: $-\overline{\Delta U}_1 = -\overline{\Delta U}_1_{\mu \cdot aлкан} - 1,92 - 0,06 n,$
1- <i>н</i> -алкил-1-циклопентены: $-\overline{\Delta U}_1 = -\overline{\Delta U}_1_{H-алкан} + 0,75 - 0,19 n,$
3- <i>н</i> -алкил-1-циклопентены: $-\overline{\Delta U}_1 = -\overline{\Delta U}_{1\text{к-алкан}} - 1,19 - 0,02 n$,
1-изоалкил-1-циклопентены: $-\overline{\Delta U}_1 = -\overline{\Delta U}_{1 \kappa-aлкaн} - 2,45 + 0,04 n$,
1- <i>н</i> -алкил-1-циклогексены: $-\overline{\Delta U}_1 = -\overline{\Delta U}_{1 \ \text{в-алкан}} - 0,88 - 0,06 \ n,$
3- <i>н</i> -алкил-1-циклогексены: $-\overline{\Delta U}_1 = -\overline{\Delta U}_1_{\text{и-алкан}} - 1,98 + 0,05 n$,
4- <i>н</i> -алкил-1-циклогексены: $-\overline{\Delta U}_1 = -\overline{\Delta U}_{1 \text{к-алкан}} - 0,27 - 0,11 n.$

Выводы

Рассчитаны дифференциальные мольные изменения внутренней энергии адсорбата — ΔU_1 для монозамещенных алкилциклопентанов, -пентенов, -гексанов и -гексенов C₆—C₁₁ на ГТС и рассмотрены закономерности их изменения в зависимости от числа атомов углерода в молекуле, а также структуры и положения боковой цепи.

Значения — $\overline{\Delta U_1}$ увеличиваются линейно с числом атомов углерода (*n*) в молекуле. Приведены уравнения зависимостей между — $\overline{\Delta U_1}$ и *n*. Разветвление боковой цепи приводит к понижению значений — $\overline{\Delta U_1}$ по сравнению с соответствующими углеводородами с нормальной алкильной группой у цикла. Величины — $\overline{\Delta U_1}$ уменьшаются по мере удаления боковой цепи от кратной связи из положения 1 в положение 3 в цикло-

Таблица 2

пентеновом цикле. При равном числе атомов углерода в молекуле значения — $\overline{\Delta U_1}$ изомерных *н*-алкилциклогексенов увеличиваются в порядке: 1-. 3- и 4-н-алкил-1-шиклогексены

ЛИТЕРАТУРА

- 1. Мейстер А., Ранг С., Эйзен О. Исследование адсорбции н-алкенов и н-алкинов на графитированной термической саже. - Изв. АН ЭССР. Хим., 1979, т. 28,
- № 1, с. 15—22. 2. Ранг С., Мейстер А., Эйзен О. Исследование адсорбции циклических углево-2. Гант С., Менстер А., Элзен О. Псследование адородни цилических улево-дородов на графитированной термической саже газохроматографическим мето-дом. — Изв. АН ЭССР. Хим. Геол., 1975, т. 24, № 3, с. 197—205.
 3. Авгуль Н. Н., Киселев А. В., Пошкус Д. П. Адсорбция газов и паров на однородных поверхностях. М., 1975, с. 369.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 17/XI 1978

Aime MEISTER, Silvia RANG, O. EISEN

TSÜKLILISTE SÜSIVESINIKE ADSORPTSIOON TERMILISELT GRAFIIDITUD TAHMAL

Artiklis on esitatud monoasendatud tsüklopentaanide, tsüklopenteenide, tsükloheksaanide ja tsüklohekseenide C_6 — C_{11} adsorptsiooni diferentsiaalsete siseenergia moolmuutuste $(-\overline{\Delta U_1})$ arvutamise tulemused. On leitud, et $-\overline{\Delta U_1}$ väärtused suurenevad süsinikuaatomite arvu suurenedes lineaarselt, ja esitatud vastavate sõltuvuste võrrandid. Võrdse süsinikuaatomite arvu puhul molekulis vähenevad isomeersete *n*-alküültsüklopenteenide $-\overline{\Delta U_1}$ väärtused külgahela nihkudes asendist 1 asendisse 3. Isomeersete n-alküültsüklohekseenide $-\overline{\Delta U}_1$ väärtused suurenevad järjekorras 1-, 3- ja 4-n-alküül-1-tsüklohekseen.

Aime MEISTER, Silvia RANG, O. EISEN

INVESTIGATION OF ADSORPTION OF CYCLIC HYDROCARBONS **ON GRAPHITIZED THERMAL CARBON BLACK**

The differential molar changes of internal energy $-\overline{\Delta U}_1$ at low surface coverages on graphitized thermal carbon black for mono-substituted cyclopentanes, cyclopentenes, cyclohexanes and cyclohexenes C_6-C_{11} have been calculated and correlated with the molecular structure of isomers.

The $-\overline{\Delta U_1}$ values increase linearly along with increasing the number of carbon atoms in the molecule n for homologous series. The constants of equations for these straight lines are calculated. At equal *n* the $-\overline{\Delta U_1}$ values decrease with the shift of the side chain from the position 1 to the position 3 in *n*-alkylcyclopentene series; for *n*-alkylcyclohexenes they increase in the following order: 1-, 3-, 4-n-alkyl-1-cyclohexenes.