EESTI NSV TEADUSTE AKADEEMIA TOIMÉTISED. 28. KOIDÉ KEEMIA, 1979, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 ХИМИЯ. 1979. № 3

УДК 661.185

Реэт ИООНСОН, Х. КИИК

СИНТЕЗ И СВОЙСТВА АЛКИЛ-N-(СУЛЬФОЭТИЛ)- И -N-(КАРБОКСИМЕТИЛ)-АМИНОАЦЕТАТОВ

2. Моноацетаты

Представлена О. Эйзеном

Ранее выяснено [1], что при синтезе ПАВ путем замещения галоида в эфирах галоидуксусных кислот амино- или аминосульфокислотами лучшие выходы дает использование эфиров с вторичным радикалом. В этом случае могут быть применены также более доступные хлорацетаты, и конечные продукты оказываются более устойчивыми к щелочному гидролизу.

В настоящем сообщении предлагаются данные о синтезе ПАВ из указанных выше эфиров, имеющих различные длины алкильного радикала. Рассмотрены также влияние концентрации реагентов на исход реакции, возможность замещения избытка амино- или аминосульфокислоты щелочью и т. п. Приводятся некоторые показатели химических свойств синтезированных препаратов — в первую очередь устойчивости к гидролизу. Из амино- и аминосульфокислот, как и в [1], были использованы глицин, саркозин, таурин и метилтаурин.

Экспериментальная часть

Исходные вещества. Вторичные алкилхлор- или алкилбромацетаты с алкильными радикалами C_8 , C_{10} , C_{12} , C_{14} были получены из соответствующих алкенов-1 и монобромили монохлоруксусной кислоты [²]. Изомерный состав эфиров, %: 2-галоидацетат 60—75, 3-галоидацетат 25—35, 4-галоидацетат 5—15. Их чистота, по данным газохроматографического анализа, выше 96%. Таурин был синтезирован из β -аминоэтилсерной кислоты и сульфита натрия [³], метилтаурин — из 2-хлорэтансульфокислоты и метиламина [⁴]. Оба препарата очищались многократной перекристаллизацией. Использовались х. ч. глицин и саркозин.

Проведение реакции. Соотношение реакций замещения и аминолиза. Реакции, как и в предварительных синтезах $[^1]$, проводились в 70%-ном спиртово-водном растворе. Установление соотношения протекания реакции замещения галоида и побочной реакции аминолиза осуществлялось по методике $[^1]$.

Выделение конечных продуктов. Для выделения веществ из их смесей с солями использовался в основном метод превращения их во внутреннюю соль.

1) Сульфонаты. Сухой остаток (1 часть) растворялся в 5—10 (по весу) частях воды, к раствору прибавлялась 0,5—1 часть ацетона и 2—3-кратный молярный избыток концентрированной HCl. После выдерживания в течение 24 и при температуре

² ENSV TA Toimetised, K 3 1979

Tabauya 1

Данные анализа алкил-N-(сульфоэтил)- и -N-(карбоксиметил)-аминоацетатов

Canada asimus a (charteonia) a caponenta company	mar 14 (c.)	(marcochar	mul-11- m	pooncamera		ammonder aron	0	
Вещество	E R MRM	раций р пно- ил е показ	низания пниме (TOCALINATE TO THE TOCALINATE TOCALINATE TO THE TOCALINATE TO THE TOCALINATE TO THE TOCALINATE TOCALINATE TO THE TOCALINATE TO THE TOCALINATE TOCALINATE TOCA	PROSTAN	T3JIAO	Титрование по аминной группе ме-экв. кислоты 1 г вещества	Титрование по аминной группе, <i>е-экв.</i> кислоты на 1 <i>г</i> вещества
PACS PACS PACS PACS PACS PACS PACS PACS	опред.	теорет.	опред.	reoper.	опред.	теорет.	опред.	теорет.
part part part part part part part part	17	in an	yc	B	- Noise	PA	1-1	
NaO ₃ S (CH ₂) ₂ NHCH ₂ COO-BTOp.C ₈ H ₁₇	4,19	4,43	43,4	45,4	7,56	7,57	2,94	3,15
", C10H21	3,95	4,06	47,6	48,7	8,31	8,11	2,87	2,90
" C ₁₂ H ₂₅	3,65	3,75	48,9	51,5	8,37	8,59	2,63	2,69
C14H29	4	3,50	55,41	54,0	9,36	86.8	2,44	2,50
NaO3S(CH2)2N(CH3)CH2COO-BTOD.C8H17	4,05	4,23	45,2	47,1	7,95	7,85	2,97	3,02
, CloH21	3,66	3,90	49,2	50,0	8,35	8,35	2,81	2,79
,, C ₁₂ H ₂₅	3,43	3,61	50,6	52,8	8,77	8,79	2,56	2,58
CIAH29	3,32	3,37	53,7	55,0	9,24	9,15	2,36	2,41
NaOOCCH2NHCH2COO-BTOD.C8H17	S di	5,25	56,9	54,0	9,05	8,24	2,70	3,75
C10H21	3,50	4,75	57,3	57,0	9,30	8,82	2,76	3,39
,, C ₁₂ H ₂₅	3,35	4,33	60,1	59,5	9,71	9,30	2,80	3,10
, C ₁₄ H ₂₉	3,01	4,0	60,4	61,5	08'6	9,70	2,31	2,85
NaOOCCH2N (CH3) CH2COO-BTOD. C8H17	5,16	2,0	55,0	55,6	8,75	8,54	3,32	3,56
", CloH21	1	4,53	55,5	58,3	9,05	9,05	3,11.	3,24
C12H25	4,15	4,16	58,0	60,5	98,6	9,20	2,82	2,97
6 C14H29	3,97	3,84	19,09	67,5	68,6	9,90	2,14	7,74

5—10°С выделившаяся внутренняя соль отфильтровывалась и промывалась водой. Путем прибавления к ее спиртовому раствору раствора NaOH (до рН 8—9) она снова переводилась в натриевую форму.

2) Карбоксилаты. Применялась та же методика, что и при выделении сульфонатов, но с тем различием, что концентрированная HCl прибавлялась не в избытке, а осторожно, до доведения pH раствора до 2-3. Карбоксилаты с длиной алкильного радикала C_{12} и выше могут быть выкристаллизованы из воды также в форме натриевой соли.

Все вещества могут быть извлечены из сухих остатков (в виде натриевой соли) петролейным эфиром, хлороформом, абсолютным спиртом, изобутиловым спиртом и т. п. В некоторых случаях может быть использовано осаждение их из этих растворов избытком ацетона.

Данные анализа очищенных продуктов приведены в табл. 1.

Устойчивость к гидролизу. Скорость гидролиза устанавливалась определением количества образующегося в результате гидролиза связанного спирта.

Гидролиз с NaOH. Около 0,5 г вещества (длина алкильного радикала С₁₂) и 0,1 г вторичного или первичного ундецилового спирта (внутренний стандарт) растворялись в 50%-ном этиловом спирте, раствор нагревался до температуры измерения и к нему прибавлялся раствор эквивалентного количества NaOH в 50%-ном спирте, также нагретый до температуры измерения. Через соответствующие промежутки времени из полученной смеси отбирались пробы, которые экстрагировались гексаном, затем на основе газохроматографического анализа экстрактов (смесь додецилового и ундецилового спиртов) определялись количества додецилового спирта.

 Γ и д р о л и з б е з NaOH. Раствор вещества с ундециловым спиртом быстро нагревался до температуры измерения, из него брались пробы, которые анализировались так же, как описано выше.

(Применение методов, основанных на титровании, для определения скорости гидролиза затруднено присутствием в молекулах этих веществ аминной группы.)

Обсуждение результатов

Длина углеводородного радикала галоидацетата мало влияет на исход его реакции с аминосульфокислотой (табл. 2).

Tаблица . Реакция вторичных бромацетатов C_8 — C_{12} с таурином (70%-ный этанол; концентрация эфиров 0,1 моль/л; эфир—таурин 1:2; 70°C)

Эфир	Продолжи- тельность реакции, ч	Выход продуктов замещения, мол. %	Выход вторичного спирта, мол. %
BrCH ₂ COO-втор.С ₈ H ₁₇	3,5	96	3
BrCH ₂ COO-втор.С ₁₀ H ₂₁	3,5	95	4
BrCH ₂ COO-втор.С ₁₂ H ₂₅	3,0	92	4
BrCH ₂ COO-втор.С ₁₄ H ₂₉	4,0	94	2

Исследование влияния условий синтезов показало, что замена избытка аминосульфокислоты, необходимой для связывания освобождающегося при реакции замещения хлористого водорода, щелочью приводит к повышению доли реакции аминолиза или к другим побочным реак-

Реакция вторичного додецилхлорацетата с таурином в различных условиях (70%-ный этанол; 80°C)

E annihou a	Условия	M. andreada	ny umbaliana	Name of the state	-
Молярное соотношение эфира и таурина	Прибавляемая щелочь	Концент- рация эфира, моль/л	Продолжи- тельность реакции,	Выход продукта замещения, мол. %	Выход вторичного додецилового спирта, мол. %
1:2 1:2	and vute to an annual	0,1 0,1*	20 24	77 78	18 15
1:2		1,0 1,0*	8	81 86	14
-Molt: Come	NaOH Na ₂ CO ₃	1,0	0,5	AUTO-BOOK	81 45
1:1	CH ₃ COONa	0,1	22	58**	19

^{*} Таурин (натриевая соль) прибавлялся постепенно в течение первой половины реакции.

** Образовалось также 10 мол. % эфира ацетоксиуксусной кислоты

(CH₃COOCH₂COOC₁₂H₂₅). *** 50%-ный этанол.

циям (табл. 3). Уменьшение протекания аминолиза в некоторой мере осуществимо постепенным прибавлением соли аминокислоты к раствору эфира, т. е. поддерживанием рН раствора как можно низким. Повышение концентраций реагирующих веществ приводит также к некоторому понижению доли реакции аминолиза.

Данные анализа синтезированных продуктов с различными длинамы алкильного радикала (табл. 1) свидетельствуют о том, что вещества, полученные на основе таурина, метилтаурина и саркозина, соответствуют приведенным в табл. 3 формулам. Продукты реакции глицина, судя по этим данным, могут содержать также некоторое количество диацетата [NaOOCCH₂N(CH₂COOR)₂]. Как установлено специальными опытами, в условиях данных синтезов (70%-ный этанол, соотношение глицин— эфир 2:1) диацетат образуется не в течение основной реакции, а в ходе выделения продукта, в первую очередь при высушке реакционной смеси. При быстром проведении выделения содержание диацетата может быть уменьшено.

Из химических свойств данных веществ внимания заслуживает их амфотерный характер. Как уже было отмечено в [¹], и N-(сульфоэтил)-, и -N-(карбоксиметил)-производные переходят в малорастворимую в воде форму внутренней соли. При дальнейшем подкислении веществ с карбоксильной группой они переходят в катионную форму [HOOCCH₂NHR′CH₂COOR]·X⁻ (R′ — CH₃ или H, X⁻ — анион), которая хорошо растворяется в воде. Вещества с сульфогруппой в катионную форму не переходят.

В табл. 4 приведены данные устойчивости к гидролизу синтезированных веществ четырех типов. В щелочи скорость их гидролиза увеличивается в ряду: производные метилтаурина, таурина, саркозина, глицина. Гидролизуемость их в щелочи практически не отличается от гидролизуемости взятого для сравнения додецилсульфоацетата — аналогичного вещества без аминной группы (табл. 4, № 6), однако она значительно больше при отсутствии щелочи — в этом проявляется влияние аминной

Время гидролиза половины вещества алкил-N-(сульфоэтил)и -N-(карбоксиметил)-аминоацетатов (50%-ный этанол; концентрация 0.02 моль/л)

	2. Monoalselandid	Время гидролиза, ч		
Nº	Вещество	В присутст- вии NaOH, 30°C	Без NaOH, 100°C	
1 2 3 4 5 6	NaOOCCH ₂ NHCH ₂ COO-втор.C ₁₂ H ₂₅ NaOOCCH ₂ N (CH ₃) CH ₂ COO-втор.C ₁₂ H ₂₅ NaO ₃ SC ₂ H ₄ NHCH ₂ COO-втор.C ₁₂ H ₂₅ NaO ₃ SC ₂ H ₄ NHCH ₂ COO-перв.C ₁₂ H ₂₅ NaO ₃ SC ₂ H ₄ N (CH ₃) CH ₂ COO-втор.C ₁₂ H ₂₅ NaO ₃ SC ₂ H ₄ N (CH ₃) CH ₂ COO-втор.C ₁₂ H ₂₅ NaO ₃ SCH ₂ COO-втор.C ₁₂ H ₂₅	3,0 4,7 2,5 1,1 7,8 2,3	6,0 7,0 24 9,5 40 300	

группы, дающей щелочную реакцию. Гидролиз веществ с вторичным алкильным радикалом, как и можно было ожидать, протекает более медленно, чем гидролиз веществ с первичным радикалом (табл. 4, № 4).

Выводы

- 1. Синтезированы гомологические ряды ПАВ путем реакции вторичных эфиров галоидуксусных кислот с глицином, саркозином, таурином и метилтаурином.
- 2. Изучено влияние на данную реакцию концентрации реагирующих веществ и последовательности их введения в реакционную смесь, а также возможность замены избытка амино- или аминосульфокислоты шелочью.
- 3. Установлено, что синтезированные вещества обладают амфотерными свойствами — особенно вещества с карбоксильной группой.
- 4. Определена скорость гидролиза синтезированных веществ, которая в щелочи приблизительно такая же, как у аналогичных веществ без аминной группы, а в нейтральной среде значительно выше.

ЛИТЕРАТУРА

- 1. Киик Х., Иоонсон Р., Файнгольд С. Синтез и свойства алкил-N-(сульфоэтил)- и -N-(карбоксиметил)-аминоацетатов. 1. Реакция галоидацетатов с амино- и аминосульфокислотами. — Изв. АН ЭССР. Хим., 1979, т. 28, № 2, c. 80-83.
- 2. Файнгольд С. И., Киик Х. Э. ПАВ типа вторичных сульфоацетатов и сульфо-
- Файнгольд С. И., Кийк А. З. ПАБ типа вторичных сульфовацетатов и сульфоватиламиноацетатов. Масложир. пром-сть, 1975, № 4, с. 30—31.
 Vakilwalla, M. V., Trivedi, D. M. The manufacture of taurine. J. Indian Chem. Soc., Industr. and News Ed., 1950, v. 13, p. 150—156.
 Schick, J. W., Degering, E. F. Synthesis of taurine and N-methyltaurine. Industr. and Engng Chem., 1947, v. 39, N 7, p. 906—909.

Институт химии Академии наук Эстонской ССР

Поступила в редакцию 22/V 1978

Reet JOONSON, H. KIIK

ALKUUL-N-(SULFOETUUL)- JA ALKUUL-N-(KARBOKSUMETUUL)AMINOATSETAATIDE SUNTEES NING OMADUSED

2 Monoatsetaadid

Artiklis on esitatud halogenoetaanhapete estreist (alküülradikaal sekundaarne C_8 , C_{10} , C_{12} , C_{14}) ning glütsiinist, sarkosiinist, tauriinist ja metüültauriinist sünteesitud pindaktiivsete ainete homoloogilised read, määratud saadud nelja tüüpi ainete hüdrolüütilised stabiilsused ja toodud andmeid reaktsiooni tingimuste mõju kohta saagisele.

Reet JOONSON, H. KIIK

SYNTHESIS AND PROPERTIES OF N-(SULPHOETHYL)- AND -N-(CARBOXYMETHYL)-AMINOACETATES

2. Monoacetates

Homologous series of surface active substances (alkyl chain secondary C_8 , C_{10} , C_{12} , C_{14}) and glycine, sarcosine, taurine and methyltaurine were synthesized. The hydrolytical stability of four types of substances attained was established, and the influence of reaction conditions upon yields was investigated.