EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, 27. KÕIDE KEEMIA, 1978, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 27 ХИМИЯ 1978, № 3

УДК 541.13.547.534.1

Ю. КАУП, Марина ГРИНЧАК, О. ЭЙЗЕН

ПРЕВРАЩЕНИЕ ЭТИЛБЕНЗОЛА В ВОДОРОДНОЙ ПЛАЗМЕ ВЧ-ТЛЕЮЩЕГО РАЗРЯДА

J. KAUP, Marina GRINTSAK, O. EISEN. ETÜÜLBENSEENI REAKTSIOONID VESINIKU HUUM-LAHENDUSPLASMAS

I. KAUP, Marina GRINCHAK, O. EISEN. STUDY OF REACTIONS OF ETHYL BENZENE IN HYDROGEN PLASMA OF GLOW DISCHARGE

Известно, что при взаимодействии ароматических углеводородов фенилацетилена [¹] и стирола [²] с водородом в ВЧ-тлеющем разряде образуются новые соединения вследствие присоединения водорода, а также распада и полимеризации исходного углеводорода. В первом случае в основном наблюдаются реакции полимеризации, во втором стирол в водородной плазме превращается в продукты гидрирования (до 40%), как с сохранением, так и с разложением исходного углеродного скелета.

Целью настоящей работы являлось изучение превращения этилбензола ароматического углеводорода с насыщенной боковой цепью в водородной плазме ВЧ-тлеющего разряда. Исследование проводилось на аппаратуре, аналогичной [^{1, 2}]. Мощность разряда варьировалась от 110 до 380 *мА* по анодному току. Действию разряда подвергалась смесь

Продукты	Степень превращения, %						
	11,32	34,62	48,52	50,99	58,24	78,27	96,64
Бензол Толуол Этилбензол Ксилолы Стирол Фенилацетилен Неидентифициро- ванные жильче	0,15 0,82 88,68 0,05 0,12 —	0,79 4,58 65,38 0,47 0,65 0,01	2,11 12,30 51,48 0,65 1,37 0,03	1,56 10,15 49,01 0,49 1,19 0,04	$1,92 \\10,51 \\41,76 \\0,42 \\1,31 \\0,05$	5,53 17,12 21,33 0,65 1,90 0,20	9,10 8,75 3,36 0,41 1,49 0,80
продукты Метан Этилен Ацетилен Этан Полимер	0,93 4,55 0,49 0,53 1,75 1,73	3,26 3,29 0,65 0,51 4,22 16,19	5,47 3,75 1,06 0,41 4,61 16,76	6,92 3,29 1,23 0,28 6,76 19,08	5,30 5,88 0,70 0,19 4,79 27,17	9,52 6,33 1,35 0,49 5,12 30,06	9,62 13,83 3,01 3,68 7,22 38,73

Состав продуктов превращения этилбензола в водородной плазме ВЧ-тлеющего разряда

Зависимость состава продуктов от степени превращения этилбензола: 1 углеводороды C_1+C_2 ; 2 углеводороды C_6+C_7 ; 3 углеводороды $>C_8$; 4 -углеводороды $>C_8$; 5 - неидентифицированные углеводороды.

этилбензола с водородом в молярном соотношении 1:5. Рабочая частота — 13,56 *МГц*.

Из полученных результатов следует, что степень превращения этилбензола линейно зависит от мощности разряда. Состав продуктов превращения этилбензола в водородной плазме ВЧ-тлеющего разряда приведен в таблице. Необходимо отметить, что качественный состав продуктов превращения этилбензола практически ничем не отличается от качественного состава продуктов превращения фенилацетилена и стирола в аналогичных условиях и содержит продукты с исходным углеродным скелетом (см. рисунок, кривая 3), а также соединения разложения (кривые 1 и 2) и полимеризации этилбензола (кривая 4). Доминирующим процессом является образование углеводородов >C₈. Газообразные продукты превращения — это в основном метан, этан, этилен и ацетилен, т. е. продукты отщепления С1 и С2 от исходного скелета. Углеводороды С3 отсутствуют. Наблюдалось также образование в небольших количествах производных циклогексана, циклогексена и циклогексадиена. Таким образом, реакции этилбензола в тлеющем разряде во многом сходны с превращениями толуола [3-5] и ксилолов [6].

Содержание метана и этана с увеличением степени превращения возрастает, содержание этилена и ацетилена (которые являются также продуктами дегидрирования этилбензола) в сумме не превышает 4%.

Полученные данные свидетельствуют также о том, что содержание толуола с увеличением степени превращения проходит через максимум, а содержание бензола возрастает экспоненциально (кривая 1).

В тлеющем разряде имеет место и дегидрирование этилбензола с образованием стирола и фенилацетилена. Однако на основе наших данных нельзя судить о механизме дегидрирования; образование дегидрированных форм этилбензола происходит, возможно, вследствие секундарных процессов. Содержание как стирола и фенилацетилена, так и ксилолов с увеличением степени превращения этилбензола изменяется мало.

В результате проведенных опытов с бензолом в водородной плазме выяснилось, что происходит разрыв бензольного кольца с образованием метана, этана, этилена и ацетилена. Возможно, именно разрывом ароматического ядра этилбензола и обусловлен рост содержания легких углеводородов, особенно метана, при больших мощностях разряда.

ЛИТЕРАТУРА

- Кауп Ю., Гринчак М., Эйзен О. Превращение фенилацетилена в водородной плазме ВЧ-тлеющего разряда. — Изв. АН ЭССР, хим., 1978, т. 27, № 1, с. 49—51.
- Кауп Ю., Гринчак М., Эйзен О. Превращение стирола в водородной плазме ВЧ-тлеющего разряда. — Изв. АН ЭССР, хим., 1978, т. 27, № 1, с. 57—58.
 Такі, К. Studies of the electric discharge of organic compounds. I. The decomposition
- T a k i, K. Studies of the electric discharge of organic compounds. I. The decomposition of toluene in 10 MHz and 2450 MHz discharges. — Bull. Chem. Soc. Japan, 1970, v. 43, N 5, p. 1574—1577.
- v. 43, N 5, p. 1574-1577.
 Kikkawa, S., Nomura, M., Tanida, M. Glow discharge reactions of C₆H₆ (or C₆H₅CH₃) with CH₃X (X=Cl, Br). Technol. Repts Osaka Univ., 1975, v. 25, N 1230-1253, p. 233-239.
- Klaus, G. Plasmachemie neue Synthesewege in der organischen Chemie. Chemiker-Ztg, 1975, Bd. 99, N 6, S. 257-264.
- T a k i, K. Studies of the electric discharge of organic compounds. II. The decomposition of o-, m- and p-xylenes in 10-MHz and 1 2450-MHz discharges. — Bull. Chem. Soc. Japan, 1970, v. 43, N 5, p. 1578—1580.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 8/XII 1977