ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 27 XИМИЯ. 1978, № 3

УДК 661.186.6:547.29

С. ФАЙНГОЛЬД, К. КАРОЛИН

СИНТЕЗ НАТРИЕВЫХ СОЛЕЙ АЛКИЛПОЛИЭТОКСИЭТАНКАРБОНОВЫХ КИСЛОТ

Соли жирных кислот в жесткой воде дают нерастворимые осадки, и это ограничивает их применение, несмотря на то, что они обладают и ценными свойствами [¹]. При использовании этих солей для получения моющих средств присутствие триполифосфата натрия и карбоксиметилцеллюлозы не требуется. Мыла, полученные на их основе, не загрязняют сточные воды, так как хорошо биологически разлагаются. Следовательно, необходимо ввести в молекулу карбоновых кислот такие функциональные группы, которые улучшили бы растворимость кальциевых и магниевых солей, но сохранили бы положительные поверхностно-активные свойства их. Представляет интерес синтез таких кислот и их солей, которые в молекуле между гидрофобным углеводородным радикалом и карбоксильной группой имеют одну или несколько эфирных групп. Эти соединения с достаточной чистотой могут быть получены в результате присоединения к полигликолевым эфирам хлоруксусной кислоты.

Целью настоящей работы было получение алкилполиэтоксиуксусных

кислот с общей формулой

где R — углеводородная цепь с 12 атомами углерода, а n — количество присоединенных оксиэтильных групп (1—6).

Экспериментальная часть

Наиболее простым примером синтеза полигликолевых эфиров служит реакция

$$C_{12}H_{25}ONa + CICH_2COOH + NaOH \rightarrow C_{12}H_{25}OCH_2COONa + NaCl + H_2O. (1)$$

Так как настоящая работа заключалась не только в получении додецилового эфира, но и ряда полигликолевых эфиров, то синтез проводился на основе следующих реакций:

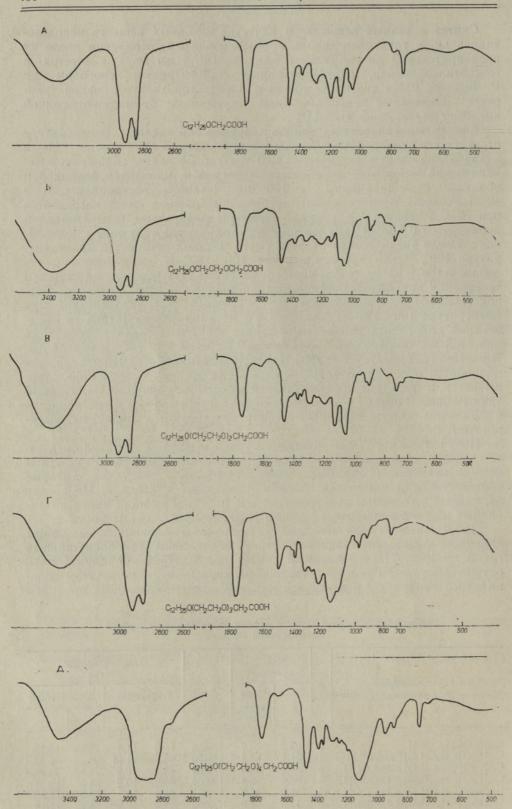
$$C_{12}H_{25}X + NaO(CH_2CH_2O)_nH \rightarrow C_{12}H_{25}O(CH_2CH_2O)_nH + NaX,$$
 (2)

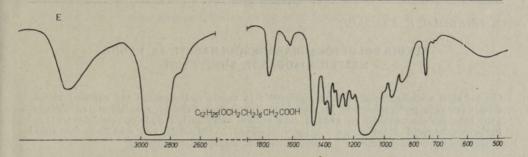
$$C_{12}H_{25}O(CH_2CH_2O)_nH+ClCH_2COOH+2NaOH \rightarrow C_{12}H_{25}O(CH_2CH_2O)_nCH_2COONa+2H_2O+NaX,$$
(3)

где n = 1 - 6, X — Cl или Br.

Синтез исходных веществ. В качестве исходных веществ использовались ди- и триэтиленгликоль промышленного изготовления после их предварительной дистилляции в вакууме (3—4 мм рт. ст.) и тетра- и гексаэтиленгликоли, синтезированные лабораторным способом по Р. Фордису [2] из диэтиленгликоля и β,β'-дихлорэтилового эфира (хлорекса). Первичные додецилбромиды получены с бромистоводородной

кислотой по методике Косты [3]. Синтез полигликолевых эфиров хлоруксусной кислоты. В литературе отсутствуют проверенные способы синтеза эфиров этих кислот. Нами разработана следующая методика. В трехгорлой колбе, снабженной механической мешалкой, электрическим нагревом, капельной воронкой и обратным холодильником, в 100 мл метанола растворяется 6 г (0,25 г-атома) металлического натрия. Реакционная смесь нагревается при 70°C в течение 1 ч и при постоянном энергичном перемешивании добавляется 0,5 моля (двукратный избыток) соответствующего полигликоля. После трехчасового нагрева смеси метанол отгоняется при температуре 100°. Затем при температуре 100—120° в реакционную смесь добавляется 0,25 моля бромистого додецила. Нагрев продолжается в течение 8 ч до завершения образования додецилового полигликоля. Осадок NaBr отфильтровывается. В полученный экстракт-фильтрат при температуре 100—125° добавляется 6 г металлического натрия до образования алкоголята гликолевого эфира, а затем в реакционную смесь при этой же температуре добавляется 0,25 моля хлоруксусной кислоты. В результате образуется осадок NaCl. Натревание и перемешивание продолжаются в течение 8 ч. После окончания реакции осадок отфильтровывается, и фильтрат обрабатывается диэтиловым эфиром. Полученный таким образом осадок в свою очередь отфильтровывается и растворяется в этиловом спирте. Эфиро- и спирторастворимые продукты высу-


Полученные продукты очищаются трижды эфиром и этанолом, а затем проводится анализ их физико-химических свойств. Результаты физико-химических анализов эфирорастворимых продуктов, которые соответствовали расчетным данным, приведены в таблице, ИК-спектр их, снятый с помощью спектрометра UR-10 и содержащий набор интенсивных полос поглощения в области $1650-660\ cm^{-1}$, дан на рисунке.


шиваются.

По вышеизложенной методике синтезированы полигликолевые эфиры хлоруксусной кислоты заданного строения с количеством оксиэтильных групп n=1-6. Первоначальный синтез для получения продукта n=0 осуществлен путем непосредственной реакции между алкоголятом додецилового спирта и хлоруксусной кислотой. Синтезированные продукты

Физико-химические характеристики полигликолевых эфиров хлоруксусной кислоты

Синтезированное соединение	n	Выход продукта			Элементарный состав			
		3	% от теоре- тическ.	n 20 D	Расчетный		Фактический	
					С	Н	C	Н
C ₁₂ H ₂₅ OCH ₂ COOH C ₁₂ H ₂₅ O (CH ₂ CH ₂ O) CH ₂ COOH C ₁₂ H ₂₅ O (CH ₂ CH ₂ O) ₂ CH ₂ COOH C ₁₂ H ₂₅ O (CH ₂ CH ₂ O) ₃ CH ₂ COOH C ₁₂ H ₂₅ O (CH ₂ CH ₂ O) ₄ CH ₂ COOH C ₁₂ H ₂₅ O (CH ₂ CH ₂ O) ₆ CH ₂ COOH	0 1 2 3 4 6	32,2 51,1 38,4 33,0 29,0 11,5	53,7 59,4 47,5 46,8 46,0 45,8	1,4450 1,4460 1,4590 1,4560 1,4561 1,4592	69,0 66,7 65,1 64,0 63,0 61,4	1/1,4 11,11 10,8 10,6 10,5 10,4	73,98 70,06 70,80 62,5 70,84 68,45	13,13 11,80 11,83 10,71 11,89 11,19

 WK -спектры синтезированных додецилоксиэтан-(A), додецилмоноэтоксиэтан-(B), додецилдиэтоксиэтан-(B), додецилтриэтоксиэтан- (Γ) , додецилтетраэтоксиэтан- (\mathcal{A}) и додецилгексаэтоксиэтанкарбоновых кислот (Е).

(таблица) содержат карбоксильные группы, и поэтому они не ионогенны. Нейтрализация продуктов до натриевых солей осуществляется 10%-ным раствором NaOH.

Полученные вещества являются прозрачными гомогенными жидкостями от светло-желтого до светло-красного цвета и растворяются в

воде, эфире, этаноле, бензоле и толуоле.

Обсуждение результатов

Результаты физико-химического анализа продуктов показывают, что при использованной нами методике синтез алкилполиэтоксиэтанкарбоновых кислот заданного строения возможен с удовлетворительными выходами (50-60%) и с достаточной чистотой продуктов. Анализ ИК-спектров показывает, что интенсивность полос поглощения увеличивается в зависимости от длины полиэтиленгликолевой цепи и что во всех синтезированных продуктах при частотах поглощения 1745—1750 см-1 имеются карбоновые кислоты. Однако, как известно, при синтезе полигликолевых эфиров по Вильямсону образуются примеси карбонильного, сложноэфирного и ненасыщенного характера [4]. Такие примеси присутствуют в синтезированных продуктах при частоте поглощения 1620—1660 см-1.

Полученные в результате элементарного анализа продуктов несколько завышенные содержания углерода и водорода по сравнению с расчетными данными объясняются высоким молекулярным весом синтезированных соединений. Это относится и к соединениям с более длинными

полиэтиленгликолевыми цепями.

ЛИТЕРАТУРА

Файнгольд С. И. Синтетические моющие средства из нефтяного и сланцевого сырья. Л., 1964.
 Fordyce, R., Lowell, E., Hibbert, H. Studies on reactions relating to carbohydrates and polysaccarides. LVI. The synthesis of the higher polyoxyethylene glycols. — J. Amer. Chem. Soc., 1939, v. 61, p. 1905.
 Общий практикум по органической химии (ред. А. Н. Коста). М., 1965, с. 170.

4. Беллами И. Инфракрасные спектры сложных молекул. М., 1963.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 7/VI 1976

S. FAINGOLD, K. KAROLIN

ALKÜÜLPOLÜETOKSÜKARBOKSÜÜLHAPETE JA NENDE NAATRIUMISOOLADE SÜNTEESIST

On esitatud alküülpolüetoksükarboksüülhapete ja nende naatriumisoolade sünteesi metoodika vastavate polüglükoolide ja monoklooretaanhappe vahelise reaktsioonina. Williamsoni eetersünteesimeetodil on saadud rida kindla struktuuriga dodetsüülpolüetoksüetaankarboksüülhappeid üldvalemiga $C_{12}H_{25}O\left(CH_2CH_2O\right)_nCH_2COOH$, kus n=1-6. On antud sünteesitud produktide füüsikaline iseloomustus ja infrapunased spektrid.

S. FAINGOLD, K. KAROLIN

SYNTHESIS OF ALKYLPOLYETHOXYACETIC ACIDS AND THEIR SODIUM SALTS

In this paper the method of synthesis of alkylpolyethoxyacetic acids by the reaction with corresponding polyglycols and monochloracetic acids is described. A series of defined dodecylpolyethoxyacetic acids have been prepared by the Williamson ether synthesis, according to the formula $C_{12}H_{25}O(CH_2CH_2O)_nCH_2$ —COOH, where n=1—6. The preparative technique, some physical constants and the infrared spectrum of the synthetized products are reported.