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Abstract. The waste water of the wood barking department of the Enso-Gutzeit OY Varkaus

factory was studied. High pressure liquid chromatography (Hewlett Packard 1050) was used to

analyse the waste water. The influence of ozone and hydrogen peroxide on the organic compounds
in waste water was studied. The changes in the UV absorbance at 254 nm, COD, and BOD were

observed. Simultaneous application of ozone and hydrogen peroxide was found to be more efficient

than simple ozonation.
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INTRODUCTION

The composition and characteristics of waste waters of different origin
vary. The pulp and paper industry is one of the industries generating large
amounts of waste water [l]. The worldwide yearly output of cellulose is
over 160 million tons. In the cellulose industry the wood is usually barked

by the damp method. The wood barking department produces about 5% of
all waste water in a cellulose factory.

The treatment of the waste water with ozone and hydrogen peroxide
was studied. In [2] the elimination of atrazine in the Seine River water was

studied. Results showed better degradation of atrazine in the water treated

with a combination of ozone and hydrogen peroxide than ozone alone.

Results of the action of ozone and hydrogen peroxide on oxalic acid were

presented in [3]. The radical-producing system was much more effective at

pH values appropriate to natural water. In [4] UV absorbance at 254 nm

was studied. The changes in UV absorbance at 254 nm were observed in a

lake water. The absorbance of water was efficiently reduced in the ozone

and hydrogen peroxide system. The ozone and hydrogen peroxide system
has also been studied for the oxidation of organic substrates that may be

found in different waste waters [5-7].
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EXPERIMENTAL

Waste waters of a wood barking department were used in this study.
The samples were taken from the Enso-Gutzeit OY Varkaus factory.

The chemical composition of waste water was analysed on a Hewlett

Packard 1050 series high pressure liquid chromatograph (HPLC) with an

HP 1040 M series II diode-array detector. The column was HP LiChrosper
100 RP-18, 5 pm, 125 x 4 mm. The mobile phase was 0.005 M phosphate
buffer and acetonitrile content varied from 30 to 70% (from 6 to 20 min).
The flow rate was 1 ml/min. Ozone and ozone hydrogen peroxide
experiments were conducted in a batch mode in a bubble column with a

volume of 3400 ml, height 60 cm, and diameter 9 cm. The hydrogen
peroxide concentration was 0,1, 3, and 10 mM. Ozone was generated
from air by a laboratory scale ozone generator Sandler Ozonizer Model

200.

The gas-phase ozone concentration at the inlet and outlet of the reactor

was monitored titrimetrically with potassium iodide solution using the

International Ozone Association Standard Method 001/87 and the
measurement of residual ozone ш water was performed by the lOA

Standard Method 004/89.

RESULTS AND DISCUSSION

The chemical composition of the waste water was studied by HPLC.

The chromatogram of waste water is shown in Fig. 1. The highest peak
could be methylphenol.

The waste water from the Varkaus factory was ozonated in the

following ways:
a) the original waste water;

b) waste water diluted with distilled water (1:4);
c) the above-mentioned diluted waste water with hydrogen

peroxide.
The ozone dosages were approximately 2.0 mg/min.
The main results of the ozonation of the waste water from the Varkaus

factory are presented in the Table. The results show that the COD, BOD,
and UV absorbance values are unstable and change depending on the
ozone quantity. The best upshot was achieved by adding hydrogen
peroxide.

The ozone/hydrogen peroxide system has greater influence on the UV

absorbance at 254 nm of the waste water by the hydrogen peroxide
concentrations of 1 mM and 3 mM (Fig.2 The further addition of

hydrogen peroxide and ozonation did not give better results. The
absorbance at a wavelength 254 nm indicated the presence of conjugated
double bonds. The absorbance of waste water was reduced from 100% to

15% with hydrogen peroxide concentration from OmM to 6 mM,
respectively. `
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Реак# Ret Time Type Width Area Start Time End Time
| 3.104 BV 0.120 4959 2.502 3.489

2 3.617 W 0.173 326.44 3.489 3.749
3 3.862 W 0.148 234.56 3.749 4.010

4 4,078 W 0.099 51.53 4.010 4.126
5 4.245 W 0.105 93.11 4.126 4.273
6 4.396 W 0.155 399.46 4.273 4.724
7 4.935 VU 0.201 147.27 4.724 5.304
8 5.421 VU 0.197 20.92 5.304 5.954
9 6.513 BY @. 150 5.20 6.246 6.776

10 6.995 VU 0.192 20.73 6.776 7.429
11 9.589 '8V @0. 194 3.35 8.859 9.830

12 11.077 PU 0.271 8:37 10.619 11.436
13 12.006 W 0.246 10.22 11.513 12.241
14 12.884 W 0.263 7.07 12.241 12.899
15 13.170 = VU 0.257 9.47 12.899 13.339
16 13.665 W 0.258 19.89 13.339 13.958
17 14.117 — VU 0.125 3.74 13.958 14.140

18 14.472 — VU 0.297 11.56 14.140 14.646
19 15.023 W 0.249 17.53 14.646 15.139
20 15.322 UU 0.218 19.61 15.139 15.480
21 16.322 VU 0.421 75.38 15.480 16.367

22 16.404 W 0.057 9.41 16.367 16.444
23 16.622 W 0.141 24.67 16.444 16.646
24 16.823 W 0.147 24.87 16.646 16.850
25 16.883 VU 0.271 46 .43 16.850 17.R80

Fig. 1. HPLC chromatogram of diluted waste water.
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The degrees ofpurification for COD and BOD are shown in Figs. 3 and

4. The COD and BOD values increased at first. The addition of hydrogen
peroxide turns the initial compounds into compounds that are more easily
decomposable. At further addition of hydrogen peroxide the values of

COD and BOD started to decrease. The treatment of waste water with

ozone and hydrogen peroxide leads to an efficient reduction of the organic
compounds. The COD and BOD ratio was the smallest when the

concentration of hydrogen peroxide was 3 mM.

Fig. 2. The reduction of UV absorbance at 254 nm in the diluted waste water (/) and in the

ozonated diluted waste water (2) by different dosages ofhydrogen peroxide (the used ozone dosage
was 170 mg/l).

wascwaer | P | та| та | et | coDo0 | A0
Base water 0 21 280 15 420 3750 5.68 1.589

Base water 56.4 17 320 11 160 3 360 5.15 3.999

Base water 227.1 16 830 12 230 3750 449 1.092

Diluted base

water (1:4) 0 3760 3 830° 1 600 2.35 3.999

Diluted base

water (1:4) 62.4 3 170 3 620 1 600 1.98 1.104

Diluted base

water (1:4) 180.0 4 350 3830 1750 2.48 0.799

Diluted base

water (1:4) 3120 3960 3830 1 600 2.48 1.589

Waste water parameters
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OSOONI JA VESINIKPEROKSIIDI TOIME HEITVETES

SISALDUVATELE ORGAANILISTELE AINETELE

Lea MARIPUU

On wuuritud vOimalusi puhastada paberi- ja tselluloositoostuse

puukoorimistsehhi heitvett osooni ning osooni ja vesinikperoksiidiga. On

jélgitud UV neeldumise (254 nm), KHT jaBHT muutumist oksiidatsiooni-

protsessis.
Osooni ja vesinikperoksiidi samaaegne kasutamine annab heitvee

puhastamisel paremaid tulemusi kui tavaline osoonimine. KHT ja BHT

suhe oli kdige viiksem, s.t. heitvee bioloogiline oksiideeritavus oli kdige
suurem, kui vesinikperoksiidi kontsentratsioon oli 3 mM.

О ВЛИЯНИИ ОЗОНА И ПЕРЕКИСИ ВОДОРОДА
НА СОСТАВ ОРГАНИЧЕСКИХ ВЕЩЕСТВ В СТОЧНЫХ

ВОДАХ

Леа МАРИПУУ

Исследована возможность очистки CTOYHBIX вВод OT OTXOHOB

целлюлозно-бумажного производства, образующихся при окорке

древесины, озоном и системой, содержащей озон и перекись

водорода. Проведено наблюдение за поглощением УФ-лучей (254
нм) и за изменением химического и биохимического потребления
кислорода (ХПК и БИК соответственно) в процессе окисления.

Установлено, что совместное применение озона и перекиси

водорода дает лучшие результаты при очистке сточных вод, чем

обычное — озонирование. Соотношение ХПК и БПК было

наименыпим при концентрации перекиси водорода 3 ммоль (при
наиболышей биологической окисляемости сточных вод).
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