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Abstract. The removal of volatile components (ammonia, phenol) from dilute aqueous solutions

through a hydrophobic porous membrane is accelerated by the use of a temperature difference

between the feed and stripping solutions; however, it is accompanied by pervaporation of water.

Equations describing the concurrent unsteady-state mass transfer of the volatile component and

water coincided well with the experimental results.

Кеу words: gas membrane, mass transfer, membrane desorption—absorption, membrane

distillation.

Gas membranes immobilized within the pores of a hydrophobic
microporous filter separating two aqueous solutions have been used to

remove volatile solutes such as hydrogen sulphide, ammonia, free

halogens, a.O. from water [l-3]. Both the desorption of the volatile

component from water and the absorption by an aqueous stripping solution
can be carried out in the same apparatus (a pertractor) simultaneously.
Microporous polytetrafluoroethylene and polypropylene have been used
as hydrophobic membrane materials. In our previous works [4, 5]
diffusional characteristics of several microporous polymer materials were

tested and the possibility of using the depth perchlorovinyl layer as a

support for the gas membrane was demonstrated. In the transport of

ammonia from a weak aqueous solution through a gas membrane

ammonia removal of more than 99% was achieved and the possibility of

producing simultaneously a solution of more than 10% ammonium

sulphate was shown. !
As the mass transfer in the stripping solution is strongly accelerated by

the chemical reaction and the diffusion resistance of the laminar boundary
layer in the feed at the stirring speed used has been shown tobe negligible,
the overall mass transfer coefficient eguals the permeability of the
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membrane. So the mass transfer rate of the volatile component in an

isothermal unsteady-state batch pertractor can be expressed as follows:

Х АК
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where G is the molar quantity of the feed; xygg andxy are the initial and

current mole fraction of the volatile component in the feed; A is the

membrane area, m; Ky is the phase equilibrium constant of volatile

component in the feed, N-m"2; kvy is the overall mass transfer coefficient

of the volatile component, mol-m™2-s~1; and ¢ is time, 5. The mean partial
pressure of the stagnant gas in the membrane pores may be roughly
expressed as

x K
VFO VF

P IS (2)

were P 1s the total pressure, Nт2
The results of our experiments with ammonia solutions are in good

agreement with the linear plots of xygg/xyg versus time according to

Eq. (1). This makes it possible to determine the mass transfer

characteristics of several microporous membrane materials, keeping in

view that

cDyp сР 'Ф
|
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lg(l+Ky)
where the total molar concentration ¢ = Py/(RT), mol-m‘3; Knudsen's

diffusion ratio Kk= Dvy/Dg; Dyg, Dy, and Dk are the effective,

molecular, and Knudsen's diffusion coefficients of the volatile component,
respectively, m?-s7l; R is the gas constant, J.mol"'L.K~; Tis temperature,
K; ! is the membrane thickness, m; @ is the void fraction of membrane;
and q is the tortuosity of pores. |

All the above-mentioned works were carried out at room temperature
without any temperature difference between the feed and stripping
solutions. As both the partial pressure of the volatile component and the

phase equilibrium constant are strongly temperature-dependent, ап

increase in the feed temperature, accompanied by a rise of the temperature
difference between the feed and stripping solutions may remarkably
increase the mass transfer rate, particularly in case of phenol, but the

iransfer of the volatile component is accompanied by a simultaneous

distillation of water. Thus the process will become similar to membrane

distillation, although one of the components is absorbed chemically. So we

have to deal with a two-component concurrent simultaneous mass transfer

through a stagnant air layer, in which, due the unsteady-state conditions,
the quantities of both solutions and the concentrations of their components
are time-dependent. The mathematical description of such a process needs
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in general a system of partial differential equations, but in our case some

simplifying assumptions can be made:

(1) at fixed temperatures of the feed and stripping solutions the rate of

the mass transferprocess is practically not affected by a simultaneous heat
transfer, and

(2) as the concentration of the volatile component is low, its mass

transfer does not influence the quantities of the feed and stripping
solutions and the molar concentration of the water. On the contrary, the
water transport affects strongly the quantities of the phases and hence, the

concentration of the volatile component. So we regard water transfer as an

independent process, but the transfer of the volatile component as

connected with that of water.

The equations describing concurrent unsteady-state mass transfer in
case of ammonia and water were derived in our previous work [6]. Basing
on an equation describing the molecular diffusion of the water vapour
through a stagnant air film immobilized in the membrane pores, and taking
the water pressure profile as linear on the length of the membrane pore and

the mole fraction of water (due to the low volatile component
concentration) equal to 1, we obtain the equation describing the molar flux

of water vapour in an unsteady-state pertractor, without any diffusion

resistance of aqueous boundary layers, as

dGS kwA
apPwrtwPws)» (4)
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where Gs is the molar quantity of the stripping solution, mol; kyy, is the

overall mass transfer coefficient of water, mol-m™2-s™!; Руур апа Рууук are

vapour pressure of water in the feed and stripping solutions, respectively,
N-m2; Yy 1 the activity coefficient of water in the stripping solution and

e R
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At steady-state temperatures of the feed and stripping solutions, the

mass transfer equation for water vapour can be obtained by integration of

Eq. (4) as

kwA
AGy = Gy-Gsy =

77
Pwr=YwPws)b (6)

1

where Ggy is the initial molar quantity of the stripping solution. Equation
(6) is a sufficiently good approximation for describing the mass transfer of

water vapour. |
In case of a fast chemical reaction in the stripping solution a differential

equation for the transport of volatile component can be expressed as

dx dG k ;AKVF F V' AN

1
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where -dGg=dGg, Gg=Ggy— Gg, and Gg is the initial molar quantity of

the feed solution.

Substitution of Gg and dGg/dt into Eq. (7) gives

@ур
/
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Integration of Eq. (8) gives
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where PWF—PWS #0 and KVF »PWF'prws.
So, a relatively simple eguation for calculating the concurrent mass

transfer of volatile component and water is obtained. Eguations (9) and
(10) are universal, being valid for any kind of volatile components. In case

of a soluted gas, such as ammonia, hydrogen sulphide, a.0., the phase
equilibrium constant is equal to Henry's constant at the fixed feed

temperature T

Kygp=Hrg. (11)

In case of an evaporating component (phenol) the phase equilibrium
constant equals fugitivity:

Кур = YWPVE, (12)

where Py апа Yy are the partial pressure and activity coefficient of the

volatile component in the feed solution (at TE). |
Equation (9) gives an assemblage of linear plots, the slope depending

on the physical properties of the components and mass transfer

characteristics. In the Figure experimental data and linear plots of

In(xypg/xyp) versus In(Ggy/Gg) are given for different volatile
components (ammonia, phenol) and membranes (microporous
polytetrafluoroethylene, depth perchlorovinyl layer). The experimental
data in the Figure like those in our previous works [6-8] are in good
agreement with Egs. (9) and (10), thereby demonstrating the adequacy of
the above mathematical description and confirming the simplifying
presumptions used.
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tetrafluoroethylene membrane [B].
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LENDUVATE KOMPONENTIDE ERALDAMINE LAHJADEST
VESILAHUSTEST GAASMEMBRAANI ABIL

Guido RAJALO, Maia GLUSKO

Lenduvate komponentide (ammoniaagi, fenooli) eraldumine lahjadest
vesilahustest Idbi hiidrofoobse poorse membraani kiireneb toite- ja
vastuvotulahuse vahelise temperatuuridiferentsi olemasolul, kuid sellega
kaasneb vee aurustumine. Tuletatud vorrandid lenduva komponendi ja vee

liheaegse mittestatsionaarse massiiilekande kirjeldamiseks aproksimee-
rivad histi katsetulemusi.

УДАЛЕНИЕ ЛЕТУЧИХ КОМПОНЕНТОВ ИЗ СЛАБЫХ

ВОДНЫХ РАСТВОРОВ С ПРИМЕНЕНИЕМ ГАЗОВОЙ
МЕМБРАНЫ

Гуйдо РАЯЛО, Майя ГЛУШКО

Выделение летучих компонентов (аммиака, фенола) из слабых

водных растворов через гидрофобную микропористую мембрану
ускоряется при разнице температур питающего и принимающего

растворов, HO сопровождается испарением воды. Полученные
уравнения для описания совместной нестационарной передачи

летучего компонента и воды хорошо аппроксимируют экспери-
ментальные данные.
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