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Abstract. Electrocatalytic properties of thin films of gold and platinum evaporated onto a glassy
carbon substrate were studied using the rotating disk electrode technigue (RDE) and cyclic
voltammetry (CV). The obtained kinetic parameters of oxygen reduction at thin films of gold and

platinum electrodes are similar to the corresponding values at the bulk elžctrodes. An

electrochemical method for the detection of the superoxide anion radical (02) based on

immobilized cytochrom c on the surface of a gold film is described.
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INTRODUCTION

During the last decade much attention has been paid 10 е

miniaturization of electrochemical sensors [l]. The miniaturized devices

have several advantages over their macroscopic counterparts (e.g., reduced

size, faster response, smaller sample volume). The application of carbon-

based materials as a substrate for sensing elements allows us to fabricate

inexpensive and disposable sensors [2]. The metallization of carbon

substrates can be used for the improvement of sensor characteristics.

Noble metals are widely used for the fabrication of thin films because of

their electrocatalytic activity and chemical inertness.

The electrochemical reduction of oxygen has been extensively studied
at noble metal electrodes because of its significance both from theoretical

and practical aspects [3,4]. The superoxide anion (O,) and hydrogen
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peroxide are important intermediates of oxygen reduction at electrode

surfaces. These species are also formed by partial reduction of oxygen in

various biological systems and the determination of their concentration is

of considerable interest.

In the present paper the electrochemical behaviour of o'2', H,0,, and

O, at the thin film gold and platinum electrodes is discussed.

EXPERIMENTAL

Electrochemical experiments were performed on a voltammetric

system SVA-1 by using the rotating disk electrode technique (RDE) and

cyclic voltammetry (CV). The rotation rate (®) was varied from 360 to

4600 rpm.
The glassy carbon (GC) electrodes (0.41 cm in diameter) were cut from

rods and mounted in a Teflon holder. The disk electrodes were polished to

a mirror finish with 1.0 and 0.3 mm alumina (BDH) and then
ultrasonicated in bidistilled water. Thin metal films were produced by
vacuum evaporation at 2 X 1070 torr. A tungsten spiral was used for film
formation. Film thickness (ca. 50 nm) was measured by quartz crystal
microbalance. The surface morphology of thin metal films was examined

using scanning electron microscopy (JEOL JSM-35 CF).
All solutions were made in high purity 18 MQ cm Milli Q water. The

solutions 0.1 M KOH and 1.0 M KCI were prepared from reagents Pro

Analysi (Merck). The solutions of H,O, were prepared in 0.066 M

phosphate buffer. 1 M H,O, stock solution was used. Measurements were

conducted in a three-electrode, three-compartment electrochemical cell. A

Pt-wire counter electrode and a saturated calomel reference electrode were

used. A conventional Clark-type oxygen sensor with thin film Au and Pt

cathodes and a Ag/AgCl reference anode were constructed. A GC rod was

imbedded into a Teflon sleeve and sealed with silicon rubber. The top
surface of GC was coated with a noble metal film formed by vacuum

evaporation. The outer surface of the sensor was covered with 20 mm

thick polypropylene and the sensor's interior was filled with 1.0 M KCL.
The electrochemistry of immobilized cyt ¢ was investigated in 10 mM

phosphate buffer (pH 7) containing 10 mM KCI. The immobilization

procedure was the same as that described in [5, 6]: 1) the thin film Au
electrode was soaked into 10 mM N-acetyl-cysteine for 10 min and then
rinsed thoroughly with bidistilled water, 2) the N-acetyl-cysteine modified

gold film electrode was immersed into 10% 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide (EDC) solution for 20 min and was

washed several times, and 3) the obtained electrode was incubated in

2mM cyt c solution (pH 7) for 8 h at 4°C. The superoxide anion was

generated using the xanthine/xanthine oxidase system. Xanthine, xanthine

oxidase (grade III) and horseheart cytochrome ¢ (type VI) were products
of Sigma and used as received. All measurements were conducted at room

temperature (23+1°C).
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RESULTS AND DISCUSSION

The real surface area of the electrodes was determined from the

quantity of the charge under the hydrogen desorption peaks (for Pt film)
and under the oxide formation peaks (for Au film). The roughness factor
was about 5 for both thin film electrodes. The SEM micrographs indicate a

complete coverage of the substrate surface by a metal layer.
RDE measurements were conducted in order to obtain data on the

electrocatalytic properties of the thin film electrodes towards oxygen
reduction. The kinetic parameters of oxygen reduction at the thin film gold
and platinum electrodes were similar to those at the corresponding bulk

electrodes. Two distinct linear Tafel slope regions for oxygen reduction

were obtained for both the thin film and bulk platinum electrodes in

alkaline electrolyte. The intersection point of the Tafel lines nearly
coincides with the onset potential of Pt surface oxidation [7]. The

exchange current density (i) of oxygen reduction was estimated by
extrapolating the Tafel lines to the reversible potential of the 0,/OH™
couple. The Table lists the kinetic parameters for oxygen reduction at

platinum surfaces.

The voltammetry curves for oxygen reduction at thin film Au and Pt

electrodes in 1.0 M KCI solution are presented in Fig. 1. For the Pt film a

single wave was observed with a well-defined diffusion-limited current

plateau in the potential range from —0.3 to 0.8 V. As the electrode rotation

rate increases, the width of the limiting current region becomes narrower,
and the plateau is not ideally flat. The RDE data were anal?'sed using the

Koutecky-Levich (K-L) method (by plotting Г! м6. @! 2). From the

slope of the K—L plots the number of transferred electrons per oxygen
molecule was found to be close to four at the potentials of the limiting
current region for both electrodes. However, there is a large variation of

literature data for the diffusion coefficient of oxygen. It should be
mentioned that the extrapolation of the straight lines il vs. @l2 to the

infinite rotation rate yields a nonzero intercept, which indicates that a step
other than transportation is slow. Probably, this stepisO, adsorption at the

electrode [B].

-
Tafel slope, R ey ig* 109

Electrode mV/dec vs. Hg/HgO А/ст?

thin Pt film 63+3; 23820 -0.14 4.1

bulk Pt 61+2; 230+12 -0.16 2.3

Kinetic parameters for oxygen reduction at thin Pt film and bulk Pt in 0.1 M KOH solution.

РО =1 atm ,
2
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The thin film of gold shows two oxygen reduction waves on i,E-curves.
The region of limited diffusion currents is shifted toward more negative
potentials (0.7 V>E>-1.2V) than that for the thin film Pt. The

electrochemical behaviour of gold films toward oxygen reduction is

dependent on electrode pretreatment [9]. Therefore, Fig. 1b shows just a

set of data for a given type of electrode preconditioning. It is interesting to

note that the polarization curves for H,O, reduction at the thin film of gold
exhibit a limiting current region nearly in the same potential range as those

for O, reduction. '
The presence of a current plateau on i,E-curves is favourable for the

development оЁ amperometric sensors with good performance
characteristics. In order to achieve a stable output of the oxygen sensor, it

is desirable that there should be no accumulation of electroactive

intermediates of oxygen reduction (e.g. H»O,) in the sensor's internal

solution. To study the applicability of thin metal films for electrochemical

sensors, a Clark-type oxygen sensor was fabricated. A specially designed
holder was used for membrane attachment giving it a reliable fixation.

The linearity of the oxygen sensor response was tested in O,—N, gas
mixtures. Current—potential curves for the oxygen sensor with the thin film

gold cathode are given in Fig. 2. A horizontal current plateau extends to

more positive potentials compared with the polarization curves in Fig. Ib.
This indicates that in the case of a reduced oxygen flow the electrode

process is fast enough, involving four-electron reduction of oxygen. By
applying a constant voltage between the electrodes (0.8 V), a linear

relationship of the output current vs. oxygen concentration was observed

(Fig. 3). This is an indication that the overall process is under diffusion

control. The response time of е sensor on step change in O,
concentration (21-0%) was within 15-20 s.

Fig. 1. Polarization curves for oxygen reduction in air-saturated 1.0 M KCI solution at ® values of

360 (1); 960 (2); 1900 (3); 3100 (4); апа 4600 (5) rpm. a, thin Pt film; b, thin Au film.
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A large group of oxidase-based biosensors is based on the detection of

hydrogen peroxide, whose production is directly related to the

concentration of the substrate in the test media. H,O, is formed

enzymatically according to the equation: |

oxidase ,

substrate + Oy =>=>=>=> product + H,0,. (1)

The rate of the hydrogen peroxide production is measured electrochemi-

cally by poising the electrode at a suitable anodic potential:

H,O, =O, + 2H* + 2¢™. (2)

Owing to a high potential applied (which is required to ensure fast H,O,
oxidation) the electrodes are prepared of noble metals. Platinum is used

most frequently as an indicating electrode in H,0,-based biosensors,

because of its high electrocatalytic activity towards H,O, oxidation.

The miniaturization of electrodes is a challenging goal in designing
biosensors. The sensitivity of the thin film Pt on GC was studied by
holding the electrode at a constant potential and by varying the H,O,
content in the solution. The potential at which measurements were

conducted was chosen to be +0.6 V. At this potential the electrode surface

is highly oxidized, and it is necessary to stabilize the oxide layers for a

long time. The H,O, concentration was changed by adding dropwise
different aliquots of the H,O, stock solution. The range of the

concentrations studied was within 10°-2x1072 M. The kinetic current

density (i) and the Levich parameter B were obtained from the K-L plots.
Figure 4 shows the plot of logß and logij. on the H,O, concentration. Both

dependences were nearly linear with the slope values of 0.96 and 1.03,
respectively. The proportionality of the oxidation current vs. hydrogen
peroxide concentration provides the basis of the use of the thin film Pt for

Fig.3. Calibration graph for oxygen sensor.Fig. 2. Voltammograms for oxygen sensor

with a thin film Au cathode in 0,-N, gas
mixtures. v=o.s mV/s.
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electrochemical H,O, detection. An average rate constant for the

electrooxidation of H,O, at the thin film of Pt, polarized at +0.6 V, was

calculated to be 0.02 cm/s (per real Pt surface area). This value is

considerably higher than that obtained in [lo].

The electrocatalytic behaviour of a thin film gold electrode on H,OO,
reactions is quite different from that of the thin film of Pt. The thin Au film

exhibits a remarkable activity towards H,O, oxidation at high pH values.

At neutral pH values both the reduction and oxidation processes of H,O,
proceed at a high overpotential on a gold electrode. At more anodic

potentials than +l.O V, the Au film starts to deteriorate. Therefore, a gold
electrode cannot be used as an indicating electrode for H,O, detection at

neutral pH values.

The superoxide anion radical (О;) belongs to reactive oxygen species
and may damage organisms if it exceeds the level at which the organisms
are able to provide defense. The determination of superoxide ion in vivo is

a topical problem in clinical medicine. For the purpose of superoxide
detection an electrochemical method can be used [5, 6].

It has been known earlier that Oš reacts with ferricyt c:

cyt ¢ (Fe**) + O, =cyt c (Fe**) + 0,. (3)

For the development of a superoxide-specific electrode, cytochrome ¢ was

immobilized covalently on the surface of a gold film. Recently, a method

based оп cyt ¢ attachment at the self-assembled monolayer modified gold
electrode via carbodiimide coupling was proposed in the literature

Fig. 4. The dependences of logß (/), logiy (2), and logi (3) on H,O, concentration for H,OO,
oxidation on thin Pt film in 0.066 M phosphate buffer, pH 7, containing 0.1 M NaCl; E = +0.6 V.
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[5, 6, 11]. The surface modifier is not electroactive at the applied
potentials, but it must provide a favourable orientation of cyt ¢ molecules,
which makes possible a fast electron transport from the redox protein to

the electrode. The principle of the determination of superoxide ion is the

following: O, reduces ferricyt c to ferrocyt ¢ (Eq. 3) and the latter is

reoxidized by the electrode

eyt c (Fe**) =cyt c (Fe**) +€e7. (4)

The redox electrochemistry of the immobilized cyt ¢ was studied in an

oxygen-free phosphate-buffered solution. CV-s for the obtained electrode

(Fig. 5) are far from ideal due to the fact that the number of covalently
attached cyt ¢ molecules per surface area is small and the background
current is relatively large.

The cyt ¢ modified gold film electrode was tested in vitro by using a

xanthine/xanthine oxidase system for superoxide generation:

ХОр
xanthine + O, + HyO === urate+ H,0,. (5)

O, is formed as an intermediate of reaction (5). The ferrocyt ¢

reoxiäation current was measured by poising the electrode at +5O mV vs.

SCE. Our results of the superoxide anion determination are presented in

Fig. 6. The rate of the current change was proportional to the XOD

concentration. The slope value was 3.3 mA-cm™2-min~}-mM™ 1‚ which 1$

higher than in [s] due to an increased surface area.

Further research is needed for the improvement of cyt ¢ immobilization

methods.

Fig. 5. Cyclic voltammograms for the cyt ¢

immobilized thin film Au electrode in 10 mM

phosphate buffer, pH 7. Sweep rate 50 mV/s.

Fig. 6. The dependence of the rate of current

change on XOD concentration in 20 mM

phosphate buffer (pH 7.2) containing 0.1 M

NaCl. Xanthine 0.5 mM.
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CONCLUSIONS

Using the rotating disk electrode technique and cyclic voltammetry, it
was shown that the kinetic parameters of the reduction at thin films of gold
and platinum evaporated onto a glassy carbon substrate are similar to those
at the corresponding bulk electrodes. For the Pt film a single wave was

observed with a well-defined diffusion limited current plateau in the

potential range from —0.3 to 0.8 V. The thin film of gold showed two

oxygen reduction waves in i,E-curves. The number of the transferred

electrons per oxygen molecule was found to be close to four at the

potentials of the limiting current region for both electrodes.

It was shown that the thin film gold could be used for the

immobilization of the cytochrom c for the development of a superoxide-
specific electrode.
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ÕHUKESTEL METALLKATETEL TOIMUVATE HAPNIKU,
VESINIKPEROKSIIDI JA SUPEROKSIIDIOONI

ELEKTROKEEMILISTE REAKTSIOONIDE UURIMINE

AMPEROMEETRILISTE SENSORITE VÄLJATÖÖTAMISEKS

Kaido TAMMEVESKI, Toomas TENNO

On uuritud dhukeste metallkatete (Au ja Pt) elektrokataliiiitilisi oma-

dusi. Metallkatted valmistati vaakumis aurustamisel klaassiisinikalusele.

Elektrokeemilised modtmised tehti poodrleva ketaselektroodi meetodil.

Jalgiti hapniku redutseerumist, vesinikperoksiidi oksiideerumist ning
superoksiidiooni elektrokeemilist detekteerimist tsiitokroom c-ga modifit-

seeritud kuldelektroodil.

ИССЛЕДОВАНИЕ ЭЛЕКТРОХИМИЧЕСКИХ РЕАКЦИЙ
КИСЛОРОДА, ПЕРЕКИСИ ВОДОРОДА И

СУПЕРОКСИДИОНА НА ТОНКИХ МЕТАЛЛОПОКРЫТИЯХ

ДЛЯ АМПЕРОМЕТРИЧЕСКИХ СЕНСОРОВ

Кайдо ТАММЕВЕСКИ, Тоомас ТЕННО

Исследованы электрокаталитические свойства TOHKOCJIOMHBIX

МСТЭЛЛОПОКРЫТИЙ M3 золота и платины, полученных методом

вакуумного напыления. ЭЛСКТРОХИМИЧССКИС исследования выпол-

нены методом вращающегося дискового электрода. Установлено, что

электрокаталитические свойства тТонкослойных ПОКРЫ’ГИЙ из золота

и платины достаточно мало отличаются от соответствующих CBOMCTB

цельнометаллических электродов. Ноказана возможность использо-

вания тонкослойного золота при конструировании чувствительного
к супероксидиону электрода для сенсора супероксидиона.
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