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Abstract. The qualitative and quantitative variation of the monoterpenoic compounds in Estonian

conifer needle oils was studied using capillary gas chromatography. The Scots pine trees in Estonia

belong to a high 3-carene chemotype with the content of 3-carene in the needle oil amounting 10

about 20—-60% of the total monoterpene fraction. The Norway spruce needle oil contains camphene,
limonene, and 1,8-cineoleas the main components.
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Scots pine (Pinus sylvestris L.) appears to be one of the most

complicated species of the genus Pinus. Namely, it has been found that

two neighbouring trees of the same biological subspecies Pinus sylvestris
L. subsp. sylvestris L. may produce a completely different monoterpenoic
(MT) composition of their oleoresins and essential needle oils. The

occurrence of trees with a high 0.-pinene content (more than 70%), trees

with a high 3-carene content (30-50%), and trees containing relatively
much B-pinene (more than 10%) has been established [l-3]. These

variations have been found to be due to the genetic differences between

individual trees as their monoterpene biosynthesis proceeds under strong
genetic control [4-7].

Essential spruce oils are characterized by a relatively high amount of

oxygenated monoterpenes and a combination of 0.-pinene, В-ршепе, -
phellandrene, camphene, myrcene, and limonene as the main

monoterpenes [B—lo]. Little information is available on the needle oil

composition of Norway spruce (Picea abiesK.) widely growing in

Estonia.

We investigated the qualitative and quantitative variation of the

monoterpenoic compounds in Estonian conifer needle oils using high
resolution capillary gas chromatography (GC).
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EXPERIMENTAL

Since the Estonian conifer needle oil has not been studied earlier by gas

chromatography, we decided to establish first how big the differences in

essential oil compositions for individual trees could be. We gathered
needles (20-50 g) from pines and spruces growing in different places in

Estonia (Valga, Ida-Virumaa, Jogeva, Tallinn).
The essential oils were isolated using a combined steam distillation and

extraction (SDE) Marcusson microapparatus. The oil fraction in n-hexane

(1-spul) was analysed оп two fused silica capillary columns

(50 m x 0.25 mm) with bonded stationary phases (OV-101, PEG 20M).
The chromatographic system comprised a gas chromatograph Chrom 5,
flame ionization detector, and data system (Hewlett-Packard Model

3390 A integrator). Helium with a flow rate of about 0.3 ml/min for

OV-101 and 1.5 ml/min for PEG 20M was used as the carrier gas. The

column temperature was programmed from 50 to 220°C (OV-101) and

from 70 to 220°C (PEG 20M) at 2°/min. The individual MT compounds
were identified according to their retention indices on two columns in

comparison with authentic data either determined in our laboratory or

obtained from literature [ll, 12]. The results obtained were checked by
chromato-mass spectrometry. The quantitative composition of individual

compounds in the MT fraction was calculated using their peak areas. The

mass-spectrometric analysis was carried out on a Hitachi M-808 gas
chromatograph double focussing mass-spectrometer using RSL 300

capillary column (30 m x 0.32 mm). The temperature was programmed
from 60 to 120°C at s°/min, and then to 290°C at 10°/min.

RESULTS AND DISCUSSION

Errors arising from SDE were studied by analysing the standard

mixtures under possibly the same conditions as needles. The coefficient of

variation determined on the basis of GC analysis of standard mixtures

before and after SDE did not exceed 10% except for some minor

compounds (< 1%). The coefficient of variation for the repeated GC

analyses of single oil samples was below 5%.

n-Tetradecane was used as the internal standard for the determination of

oil yield. The amount of essential oils found in the needles was about 1%

of the dry weight for pine and up to 0.5% for spruce. The typical
chromatograms for pine and spruce needle oils are presented in the Figure.

The pine needle oils contained besides monoterpenes 5-40%

sesquiterpenes (molecular mass mainly 204). The spruce needle oils

contained in addition to monoterpenes 20-50% terpenoic alcohols and

esters and only a small percentage of sesquiterpenes.
In this work only the composition of the monoterpene fraction of

conifer needle oils is discussed. The MT composition of five characteristic

samples of pine and spruce needle oils is presented in the Table. The total
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amount of MT for spruce was found to be somewhat smaller (40-60%)
than for pine (60-90%). Eighteen compounds were identified in the MT

fraction of conifer needle oils, with o-pinene and 3-carene presented in

the greatest amounts in pine needle oil and camphene, limonene, and 1,8-
cineole in spruce needle oil.

_

Рше No. 1 is an o-pinene-rich tree. It is a planted tree growing at

Oismée and the origin of its seeds is not known. The other pine trees

represent the high 3-carene chemotype where the content of 3-carene

makes up about 20-60% of the total MT fraction.

The only naturally growing spruce in Estonia is Norway spruce. As all
our samples were gathered from the forest, they must belong to Norway
spruces. However, the composition of all our samples differed notably
from all those discussed in the literature [B—l2].

Our spruce samples contained 15-40% of limonene and 15-40% of a

component with a retention index equal to that of B-phellandrene on both
columns (OV-101 and PEG 20M). It is generally known [l3] that all

Chromatograms of pine needle ой оё sample No. 3 (a) and spruce needle oil of sample No. 2 (b)
obtained on the OV-101 column. Peak numbers refer to the compounds listed in the Table.

IS = internal standard; I, monoterpenes; 11, monoterpenoic alcohols and esters; 111, sesquiterpenes.
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1 Santene

2 Tricyclene

3 ao-Thujene

4 а-Ртепе ;
5 Camphene
6 Sabinene

7 B-Pinene
8 Myrcene

9 o-Phellandrene

10 3-Carene

o
L

Л
е
е
lbi
ä

2

З
sa

З
Н

)
¢f«j'-'f*:''-,v '

o



153

®
8
©
o

©
&

'

K o0 va е —- т <
с с < У © с © x A

< i N w

ю © ч% ою юн о
осс ох ®

S S~ x W

Ko n 00auv ю
S S o ‚ © с © ‹ ©

< ANA N w

V m 99 т об ср0© o а КЗЗЗ8 в

o чо© X A A ю м
S S wn © с с

= F & a

N = AA000N
© с = © б ос o <ч

^ —

чпо.ню o
© © - O б с + o ~

N w

о‚ о, ов
© © S ~d S« g ~

“`

ст ол о S
© © о с ~ S a H ~

о0

г з , Х е , AA <
O t — Oa —

—

g
° .

2 5 8 g
я © « ggo =]

E 238 588588 8 =
oyt Õ g S - õEEEFJECESE &Ф:ОДО'Ё-Е o £

НОНЕВЗЕЗ
б А - О д ЕН ЕНЕ

= N 06 отом V. N 00
v g оЧч ощ do eet ot emi



154

conifer trees irrespective of their species produce the same MT
compounds (in different quantities, of course). So we supposed that

component No. 13 in the spruce needle oil could be B-phellandrene. Yet

the mass-spectrometric analysis showed clearly that this component was

1,8-cineole. We have not found any reference showing 1,8-cineole in such

a large amount in the spruce needle oil.

CONCLUSIONS

According to their monoterpene composition the needle oils of the

Scots pine trees in Estonia belong to a high 3-carene group. The Norway
spruce needle oil contains camphene, limonene, and 1,8-cineole as the
main components.
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EESTI MÄNNI JA KUUSE OKKAÕLI MONOTERPEENSEOSA
KAPILLAARGAASIKROMATOGRAAFILINE ANALÜÜS

Anne ORAYV, Tiiu KAILAS, MilanaLIIV, Riina AAV

Kapillaargaasikromatograafia meetodil on uuritud Eesti ménni ja kuuse

okkadlide monoterpeense osa kvalitatiivset ja kvantitatiivset koostist.

Kuuse okkadli monoterpeenses osas identifitseeriti pohikomponentidena
limoneen, kamfeen ]а massispektri jargi 1,8-tsineool, mida varem pole nii

suurel hulgal kuuse okastes leitud. Uuritud ménnid kuulusid pohiliselt
kareenirikaste mindide rühma.

КАПИЛЛЯРНАЯ ГАЗОВАЯ ХРОМАТОГРАФИЯ

МОНОТЕРПЕНОВОЙ ФРАКЦИИ ЭФИРНЫХ МАСЕЛ

ДЕРЕВЬЕВ ХВОЙНЫХ ПОРОД ЭСТОНИИ

Анне ОРАВ, Тийу КАЙЛАС, Милана ЛИЙВ, Рийна ААВ

Изучены качественные и количественные изменения монотер-
пеновой части эфирных масел эстонских ХВойных Ппород при
помощи капиллярной газовой хроматографии. Установлено, что по

составу монотерпенов сосна обыкновенная лесная может быть

отнесена к группе каренистых. Основными компонентами моно-

терпеновой части эфирных масел хвои ели обыкновенной являются

камфен, лимонен и 1,8-цинеол.
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