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Abstract. Thermochromatography of a series of rubber blends was performed. Three-dimensional

thermochromatographic data were analysed by usingchemometric methods.

The method ofprincipal component analysis (PCA) used in this study is appropriate for finding
the minimum number of factors needed to describe the obtained data. PCA-gave a result that the

shape of the thermochromatogram was mostly describable using two factors. This means that the

decomposition ofrubber blends proceeded as two independent processes. |
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INTRODUCTION

Thermochromatography is an original method in thermal analysis, in

which the substance analysed is heated according to a linear temperature
program and the volatilized products are analysed [l] applying gas
chromatography.

As the same sample is analysed at several different temperatures, the

result is a series of chromatograms formed after equal time periods. This
kind of data presentation gives a good survey of the thermal behaviour of

the substance over the temperature interval applied. Changes in the

quantity of the volatilized products can be easily registrated and, at the

same time, the second dimension of the thermochromatogram gives a

possibility to identify reaction products. This kind of presentation is called

a mesh plot (Fig. 1).
An irreplaceable component of the thermochromatographic apparatus is

a computer, which in addition to controlling the experiment saves the
detector signal in the computer memory. A thermochromatogram is

essentially a data matrix, where the elements have the values of the

detector signal [2].
For processing large data masses the methods of chemometrics are

indispensable.
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Elomaa used the principal component analysis (PCA) for the

investigation of the thermochromatograms of different polymers [3]. He

found that the decomposition of polymers proceeded as two or three

independent processes. Factor analytical methods are very powerful in the

analysis of complex chemical phenomena, such as pyrolysis of rubber

blends [4].
Evolving factor analysis (EFA) is a general method for the analysis of

multivariate data, which uses the additional information of the data

matrix [s]. It has been successfully applied in different fields of chemistry,
also in thermochromatographic analysis [6]. EFA helps recognize the

thermal steps and elucidate which evolving compounds will dominate at

those temperatures. It provides a standard procedure for the comparison of
a set of thermochromatographic data. A clear separation of thermal

vaporization and thermal degradation processes was obtained by Koel
et al. [7].

Heuristic evolving latent projections (HELP) add some useful features
in resolving multidimensional data into the pure constituents [B]. HELP is
a useful method in thermochromatographic analysis making it possible to

estimate the number of distinct stages in thermolysis and to establish

which evolving compounds are related to these stages.
PCA and partial least square regression can perform the multivariate

calibration of thermochromatographic data [9].

EXPERIMENTAL

The equipment used in thermochromatography consists of a gas
chromatograph equipped with a pyrolysis oven, a sampling valve, a

Fig. 1. Mesh plot of polychloroprene.
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capillary column, and a flame ionization detector. A sample of 0.3-0.5 mg
was heated at a rate of 10°C/min from 200 to 550°C. The pyrolysis oven

was a quartz tube with an inner diameter of 3 mm and a length of 250 mm.

An about 5 mmlong sample vessel of quartz was installed in the middle of

the tube. Gas chromatographic analysis was performed in a 15 m long
capillary column with Carbowax 20 M at 100°C. Pure nitrogen was used

as the carrier gas. Sampling, heating, and data collection were controlled

by a computer.
The reproducibility of the thermochromatographic data was between

10—15%.

During the experiment 37 chromatograms were collected, each with
256 digital points. So a 37 x 256 data matrix was formed in the computer
memory. The matrix elements have the value of the detector signal.

The samples analysed were chloroprene rubber (CR), butadiene-

acrylonitrile rubber (NR), and their mixtures with variousratios of CR and
NR.

RESULTS AND DISCUSSION

In the case of a single thermochromatographic analysis the retention

time—pyrolysis temperature pair can be considered as matrix designees. In

the sense of PCA they form a property—property pair.
The data matrix is constructed with each row containing a

chromatogram initiated at a certain temperature. Each column then

collects the detector signal at a certain retention time over the whole

temperature range.
The idea of PCA is to ascertain the important factors, actually the

minimum number of factors needed to reproduce the data. In this study it

is demonstrated how the data can be decomposed to temperature- and

time-dependent parts by means of PCA.

There are several methods for the calculation of principal components.
In this study the algorithm of singular value decomposition (SVD) was

used. The SVD algorithm is a very powerful method for calculating sets of

eigenvectors for the row and column spaces. The algorithm decomposes a

data matrix (X) into three matrices as follows:

(X)= (U) — (5) WM’
37х37 37х256 256х256

The data below the matrices give the matrix dimensions in the present
work.

The PCA gives eigenvalues and eigenvectors, which are useful in the

interpretation of the results. As three first eigenvalues formed 95% of all

the eigenvalues, they were normalized to 100% (Table). The first

eigenvector of the matrix V is called retention time eigenvector. It can be

considered as a summarized chromatogram.
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The first eigenvector of the matrix U is called temperature eigenvector
and it can be considered as a summarized evolving curve. The first (pcl) and
the second (pc2) temperature eigenvectors are presented in Figs. 2,3, and 4.
The first temperature eigenvectors for the rubbers are comparable to

differential gravimetric curves of these materials. The figures show that the

decomposition of CR and NR is completely different and the evolving
curves of rubber blends are much more similar to the NR curve, especially
when the second factors are compared. These factors are not real but give an

idea of the information content on an abstract level.

Several ideas how to convert abstract factors into real ones have been put
forward. One of them is the method of Kvalheim [B]. This method gives a

general projection of the first and second temperature eigenvectors on the
axis (Figs. 5,6, and 7). It presumes that the curves for pure processes can be

estimated from the areas where the points are on the straight line that passes
zero and further use them to deconvolute the thermochromatogram.

Fig. 2. First (pcl) and second (pc2) temperature eigenvectors ofchloroprene rubber.

80% СВ| 60% СВ | 40% СВ | 20% СВ

Factor 20%NR| 40%NR| 60%NR| gso»NR| PUreNR

1 76.38 8421 85.37 86.20 87.12 87.52

2 17.96 12.36 11.26 10.33 9.36 7.94

3 5.66 3.43 3.38 3.46 3.52 4.54

The eigenvalues of the three most principal factors, % for six different samples
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Fig. 3. First (pcl) and second (pc2) temperature eigenvectors of the butadiene-acrylonitrile and

chloroprene rubber blend (40 and 60%, respectively). ,

Fig. 4. First (pcl) and second (pc2) temperature eigenvectors of butadiene-acrylonitrile rubber.
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Fig. 5. General projection of the axis of first (pcl) and second (pc2) temperature eigenvectors of

chloroprene rubber.

Fig. 6. General projection of the axis of first and second temperature eigenvectors ofblend (40 and

60%, respectively).
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CONCLUSION

PCA was proved to be a useful tool in thermochromatographic analysis
of rubbers to find the minimum number of factors describing the obtained
data. It was demonstrated that the shape of the thermochromatogram was

describable with two factors. This indicates that the decomposition of
rubber blends proceeded as two independent processes.
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KEMOMEETRIA MEETODIDTERMOKROMATOGRAAFIA
ANDMETOOTLUSES

Kaire IVASK

Termokromatograafia meetodil on uuritud monede poliimeeride termi-

list lagunemist. Peakomponentide meetodi rakendamisel termokromato-

grammide analiiiisil on leitud, et enamasti on termokromatogrammi kuju
kirjeldatav kahe faktori abil, see tdhendab, et poliimeeride lagunemine
kulgeb kahe soltumatu protsessina.

ХЕМОМЕТРИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ ДАННЫХ
ТЕРМОХРОМАТОГРАФИИ

Кайре ИВАСК

Исследован процесс термического разложения полимеров мето-

дом термохроматографии. При использовании метода главных ком-

понент для анализа термохроматограмм найдено, что в большинстве

случаев форма термохроматограмм описывается с помощью двух

факторов, т.е. разложение полимеров можно рассматривать как два

независимых процесса.
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