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Abstract. The exchange of the gas component between liquid and gas phase at a constant pressure

of the gas is described. The transient process by the change of the parameters of the gas phase and

the flow of the gas component through the interfacial surface are discussed. The dependenceof the

transient process on the diffusional characteristicsof the liquid's surface layer was established.
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The exchange of the gas component between the atmosphere and

hydrosphere depends to a considerable extent on the state of the interfacial

surface between liquid and gas. The determination of the diffusional

characteristics of the gas-liquid surface layer gives essential information
on the influence of the surface-active pollutants on the exchange of the

gaseous component between gas and liquid. The gas exchange in turn

determines the content of gaseous component in the liquid phase, which
influences biochemical processes in the natural water bodies and water

treatment systems.
The methods of the determination of the diffusional characteristics can

be classified on the basis of the stationary and nonstationary regime of

diffusion. The latter was introduced later and it is more effective. For

instance, it is successfully used in the dynamic determination of the
diffusional characteristics of the polymer's membrane for oxygen using the

Clark type sensor [l].
In the present paper the determination of diffusional characteristics of

the liquid surface layer by the transient process of the gaseous component
between gas and liquid is considered. This transient process is realized
under the following conditions:
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the gas phase is located in the separated variable volume V
the total pressure of the gas py is constant;
the area of the interfacial surface S between the gas and the liquid is

constant;
the concentration of the gas component cg in the liquid phase is

constant.

When the gas phase occurs on both sides of the liquid layer, the flow of

the gaseous component J; from the gas volume V through the layer is

proportional to the difference of the partial pressures:

Js=ks(p_ps)’ (1)

where К, is the coefficient of the diffusional conductivity of the studied

liquid layer, p is the partial pressure of the gaseous component in the

volume V, and p; is the partial pressure of the gaseous component on the

other side of the liquid layer.
As the content of the gaseous component in the gas phase is expressed

through its partial pressure or concentration and the content of the solute in

the diluted solutions through its concentration, the analytical concentration

of the gaseous component in the heterogeneous systems has a break in its

values on the interfacial surface due to the different physical state of the

gaseous component in gas and liquid. Therefore, in the mathematical

description of the transient process in the heterogeneous system equations
with boundary conditions are used. These take into account the difference

of the state of the examined gaseous component in different phases. To

simplify the solution of the system of mathematical equations, we used the

effective value of the concentration of the gaseous component — "the

effective concentration" [2]. This quantity is universal for all phases of the

heterogeneous system.
The effective concentration of the gaseous component in the volume V

of the gas phase can be expressed [2]:

Ce = mRTIV, (2)

where m 1s the number of moles of gas in volume V; R is the universal gas

constant; and 7 stands for temperature. In the gas phase c, is quantitatively
equal to the partial pressure of the gaseous component.

The effective concentration of the gaseous component c, in the liquid
can be expressed by

Cos =Kp * Cs, (3)

where k; is Henry's coefficient; cg is the analytical concentration of the

gaseous component in the liquid. -
In the observed system the gas flow J; through the interfacial surface

from the volume V to the liquid is proportional to the difference between

the effective concentrations of the gaseous component in the volume V and

the liquid phase:
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Js= k(Ce — Ces). (4)

The gas flow J; at the constant pressure py of the gaseous mixture

changes the amount of the examined gas m in the gas phase and the

volume V, which is given as follows:

У= (т + т„)(КТ/ру), (5)

where m,, is the amount of the other gases in the volume V.

The velocity of the change of the amount of the gaseous component m

in the volume V is determined by the flow J:

dm/dt = —J,. (6)

By substituting the corresponding quantities from Egs. (2), (4), and (5)
in Eq. (6) we get:

d RT m, +m V

o| олп 2 (7)
dt VO

$ m+m, ESRT

where Vy and m, are the volume of the gas and the number of the moles of

the gaseous component at £ = fg.
By the integration of Eq. (7) in the paths from [#y, mg] to [z, m] we can

write:

т—- т т —- т t—t
00 0 0

W——a - = -—° (8)
00 n 00 S

.. т„ + т

wherem = m — — — 15 Ше уашеоЁта{{—> о; [ = — —
an—ces ; ks(pV—ces)

is the time constant of the transient process (m =fAÜ)).
Under the given conditions, if the volume V is a function of the amount

of the gaseous component m and time ¢, the effective concentration of the

gaseous component c, is given as:

m

C =
P. 9

€ m+man 9)
By replacing Eq. (9) into Eq. (8) we can write:

PyTCSeo S“eTSee ) беo”б, Ру”бво (7-)
h х-—|-x— - -——— (10)
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where ¢, isthe value of c,att=ly;c =c_ is the value ofc,att— oo;
gOO es

M Py
: . :

t= т
х —— isthetimeconstant ofthetransientprocess (c, =ÄÖ)).
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The dependence of the effective concentration of the gaseous

component upon time does not have any explicit expression. Changing the

transient function to its normalized form h(f) allows us to examine and

compare the different experimental data in the general form:

[l—k h(t), й() -А(Э
1a ———]l—kph(t) h(t)o—h(t)„

kh(t),-kh(t) 1-kht(t) (t—t,)

—pl—(]:hp——x—lš——m =___o‚ (11)

-К (1) 1 - ph(t)O t

where k, = c.o/py is the coefficient which is connected with the initial

content of the gaseous component in the volume V; h(f) =c/c,q is the

transient function; A ()
,

= cem/€0 is the value of A(¢) at ¢ — 00.

The time constant ¢, may be determined by the experimental data of the

transient process and can be expressed as:

ke C,
—2

t= - xAII-Š| . 12
$ КТ ks Py

(12)

The coefficient of the diffusional conductivity of the liquid—gas surface

layer can be expressed from Eq. (12) as:

V, l-k C,
-2

k= x —mßll-Š2)| . (13)
S il ol Py

As the area of the interfacial surface S is fixed, the coefficient k; can be

expressed in the following form:

k
0 5

ks =

E . (14)

Because of the difficulties of thõ: determination of the exact thickness of

the surface layer the coefficient k_ can be used to estimate the state of the

gas-liquid interface. If we know the thickness of the surface layer [, we

can determine its permeability P:
l
S

Р, = <& (15)

The given description of the transient process determines the main

relationships between the parameters of the gaseous component in the gas
volume V (at a constant pressure of the gaseous phase) and the parameters
of the consumption of the gaseous component by the liquid. The given
method can be used for the determination of the flow of the consumption
of the gas by the examined system in the liquid phase and for the
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estimation of the influence of the surfactants on the gas exchange between

the gas and liquid phases, taking into account the state of the surface layer.
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SÜSTEEMI GAAS-VEDELIK GAASILISE KOMPONENDI

MASSIÜLEKANDE UURIMINE

Toomas TENNO, Aleksei MASIRIN

On uuritud gaasilise komponendi iilekannet siisteemis gaas—vedelik.
Gaasifaasi parameetrite muutuse kaudu on kirjeldatud gaasi voogu lébi

gaasi—vedeliku piirpinna. On kasutatud gaasi efektiivse kontsentratsiooni

moistet.

On toodud gaasilise komponendi iilekandeprotsessi iseloomustavad

vorrandid konstantse rohu ja gaasi muutuva ruumala korral. Need vorran-

did voimaldavad eksperimentaalandmete alusel médrata heterogeense
siisteemi faasidevahelist piirpinda iseloomustavaid difusioonilisi para-
meetreid ja pindaktiivsete ainete moju gaasi—vedeliku piirpinnal toimuva

gaasi lilekandeprotsessi seaduspérasustele.

ПЕРЕХОДНЫЙ ПРОЦЕСС МАССОПЕРЕДАЧИ ГАЗОВОГО

КОМПОНЕНТА В СИСТЕМЕ ГАЗ-ЖИДКОСТЬ

Тоомас ТЕННО, Алексей МАШИРИН

Получены — уравнения — переходного процесса — гетерогенной
системы: переменный объем газовой смеси постоянного давления —

поверхностный слой жидкости, потребляющей газовый компонент.

При выводе уравнений использовано понятие т.н. эффективной
концентрации газового компонента. Полученные уравнения пред-
лагаются для определения как потребления газа исследуемой жид-

костью, так и диффузионной проводимости и проницаемости ее

поверхностного слоя. По значениям этих диффузионных параметров
может оцениваться влияние поверхностно-активных веществ на

газообменные процессы B природных водоемах и очистных

сооружениях.
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