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Abstract. Polypyrrole films were deposited galvanostatically (2 mA/cm?) on steel electrodes at a

temperature of —5°C from the solution of 0.2 M pyrrole and 0.1 M sodium p-toluenesulphonate in

an ethanol/water solvent system. It was found that this polymer coating remarkably increases

corrosion resistance of steel when exposed to saline environments. A pronounced and reproducible
shift in the direction of noble metals for electrochemically coated steel was observed.

Potentiodynamic polarization measurements confirm the corrosion protective effect of the

polypyrrole coatings.
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INTRODUCTION

In recent years electrodes modified with a new type of electroactive

materials, electrically conducting polymers (CP), have attracted

considerable fundamental and technological interest[l,2]. Since

polyacetylene, the first polymer discovered to exhibit a high conductivity,
there has been rapid growth in research on conjugated heterocyclic
(polypyrrole, polythiophene) and aromatic (poly p-phenylene, polyaniline)
polymers [3]. Research is fast moving on to open up new areas of

application. More and more sophisticated materials, chemically
functionalized to add new properties (redox catalysis, electrochromism,

asymmetrical recognition, etc.) or composites to improve the intrinsic

(mechanical, electrical, optical, electrochemical) properties have been

developed. A variety of potential applications have been proposed:
sensors, surgical plasters containing active ingredients, membranes,
electrodes, electromagnetic interference shielding, deposition for antistatic

finishing, optical storage systems, etc. [4]. A steadily increasing interest
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has been shown in the research of novel potential applications as corrosion

protective materials.

In 1985 Deßerry [5S] observed the passivation of stainless steel

electrochemically coated with a CP, polyaniline (PAn) in 0.2 M H,SOy.
Beck & Barsch investigated the mechanism for е corrosion of

polypyrroles [6] and polythiophenes [7] electrodeposited galvanostatically
on an inert electrode material (platinum). Recent studies have been

focused on more active substrates like steel, iron, and copper [B, 9].
Wessling [lo] demonstrated the corrosion protection performance of the

non-electrochemically coated PAn in 1 M NaCl solution and concluded

that coatings lead to practically useful improvements in protection if a

corrosion potential shift has occurred. The protective effect was attributed
to the formation of passive metal oxide layers. Most of these investigations
have been focused on PAn. Polypyrrole (PPy) and polythiophene have

been much less studied. The protective effect of these coatings has been

observed but the mechanism of this process and especially the influence of

different media are still open.
In this work, the steel was electrochemically coated with a conducting

PPy film and the influence of saline conditions (0.2 M NaCl) was

investigated.

EXPERIMENTAL

Electrochemical syntheses were performed in a four-electrode glass cell

(Fig. 1). The working and counter electrodes were steel sheets (Fe37 with

a thickness of 0.8 mm from Rautaruuki OY, Finland. The working
electrode was placed between two parallel counter electrodes at 10 mm

distance. The coated surface areas varied from 2 to 12 cm?. A saturated

calomel electrode (SCE) was used as reference. Before the

electrochemical synthesis electrodes were prepared as follows: (i) wet

grinding with PBOO/1200 abrasive paper, (ii) polishing with AP-paste, (iii)
rinsing with ethanol (ultrasonic cleaner). Electrolyte was prepared by
dissolving the 0.1 M sodium p-toluenesulphonate (NaToS) (Aldrich) as a

doping agent in the mixture of water and ethanol (6.5 M). Pyrrole (0.2 M)
(Aldrich) was distilled under reduced pressure. All the other chemicals

were used as received.

Prior to each experiment, the electrolyte was deareated by passing
nitrogen through the solution for 20 min. A steady flow of nitrogen was

maintained over the solution surface during the synthesis. All syntheses
were performed galvanostatically at a current density of 2 mA/cm?, at a

temperature of —5°C, without stirring. Films of different thickness were

obtained by varying the polymerization time.

The conductivity of the PPy/ToS films was determined by the

conventional four-probe method. Films were peeled off the electrode and a

rectangular fragment was placed on an insulating substrate. Graphite
contacts were used.
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For the electrodeposition and electrochemical measurements a Parc

Model 273 potentiostat/galvanostat under a direct computer control was

used. Electrochemical measurements were performed in a standard three-
electrode glass cell. The surface area of the test samples was 0.5 cm?.
Potentiodynamic polarization measurements in 0.2 M NaCl solution at

room temperature were always started from the corrosion potential value

(Ecorr) 1n the anodic direction at the scan rate 1 mV/6 s. Scanning electron

microscope (SEM) studies were performed using a JEOL JXA-840

apparatus.

RESULTS AND DISCUSSION

Deposition and characterization of the films

Conductive films of PPy grow directly on the surface of anode by
electrochemical polymerization. A typical potential vs. time curve for

galvanostatic polymerization of PPy is shown in Fig. 2. A sharp oxidation

peak was observed signalling the start of PPy deposition. After that the

potential decreased with time and stabilized approximately at 1.3 V vs.

SCE. Anodic dissolution of the substrate has been mentioned as one

disadvantage during this process in some studies [9]. In our system no

anodic dissolution of the substrate was observed and films covered the

Fig. 1. The four-electrode cell for the electrochemical synthesis. 1, working electrode; 2, counter

electrodes; 3, reference electrode; 4, gas inlet. ;
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electrode entirely. Films of different thicknesses in the range of 0.2-30 um

were deposited by varying the synthesis time. The thickness was

calculated from the electrical charge consumed during the deposition [ll].
For example, films with a thickness of %pproximately 1 pm were deposited
by using a charge density of 0.24 C/cm~”. It was observed that the adhesion

of the films to the substrate depended on the film thickness. For example,
it was not possible to remove thin (200—~1000 nm) films from the substrate

in any other way than by grinding. Thick films were less adherent and it

was possible to remove them as continuous sheets from the metal surface.

Lateral conductivity of the films measured by the four-probe method was

in the range of 20-100 S/cm.

SEM studies

SEM examination of PPy/ToS-coated steel was conducted to further

characterize the material. Typical micrographs for the samples are

presented in Fig. 3. As observed, the coatings are continuous and fine

grained (Fig. 3a, 3b). The micrograph of the coating from the metal side

shows that the base of the coating is highly continuous, no pores were

observed (Fig. 3c). SEM studies of the profile of the coatings reveal that

the coating structure depends on the film thickness: monolayers of PPy
films are continuous and smooth, after that a layered porous structure

appears, and finally the fine-grained nodular growth is apparent.

Fig. 2. Potential time curve for the galvanostatic (2 mA/cm?) synthesis of polypyrrole on steel in

0.1 M sodium p-toluenesulphonate in an ethanol/water solvent system at a temperature of —5°C

(monomer concentration: 0.2 M).
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Fig. 3. Scanning electron micrographs of polypyrrole/p-toluenesulphonate (PPy/ToS) films of

different thickness (d) galvanostatically (2mA/cm?) deposited from an aqueous (water/ethanol)
solution at a temperature of —5°C. a, PPy/ToS film on steel, from the surface side; diheor=3o um;
magnification x500; b, PPy/ToS т оп steel, from е surface side; dieq,=o.s pm,
magnification x1000; ¢, PPy/ToS film, from the electrode side; dtheor=22.s um;
magnification x 1000.
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Resistance vs. time measurements

A rectangular standardized PPy piece with two terminal isolated

contacts was embedded into the NaCl solution for the resistance

measurement. The typical change of the resistance as a function of time is

shown in Fig. 4. An increase occurred in the resistance during the first

50 h. The same behaviour was observed in the NaCl solutions with

different concentrations and in distilled water.

Anodic polarization measurements

The electrochemical behaviour of the films was characterized by
polarization curves of coated steel in 0.2 M NaCl. Typical polarization
curves of the change of the redox current as a function of the applied
voltage obtained for the steel of different thickness of the PPy/ToS coating
are shown in Fig. 5. Polarization characteristics derived from these curves

by the Tafel linear extrapolation method are listed in the Table.

Remarkably lower redox currents (iregox) Were found for PPy/Tos-coated
samples. From the polarization data it can be seen that a marked decrease
of the redox current occurs together with a change of the corrosion

potential values in the direction of noble metals. The maximum shift was

+BOO mV compared to the corrosion potential of steel. This result is in

accordance with the studies of Wessling [lo] concerning chemically
deposited PAn coatings on steel. A description of the observed corrosion
protection mechanism is complicated because of the interactions of the

different processes. Our studies of the influence of the coating thickness

Fig. 4. Resistance (R) of polypyrrole/p-toluenesulphonate film as a function of time in 0.2 M NaCl

solution.
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on the protection effect of steel are inconclusive. We did not observe any

strong correlation between the thickness and the values of i.4,4. The

protective effect depends on the quality of the coating (deposition
process) rather than on its thickness. | |

Calculated from the anodic polarization curves by the Tafel equation

CONCLUSIONS

Our results of the anodic polarization measurements of the PPy/ToS
coatings on steel confirm the protective effect of these coatings. The

corrosion protection of steel of our PPy coatings is more effective than the

results of electrochemically deposited PAn coatings investigations [B]
show.

Fig. 5. Anodic polarization of steel and polypyrrole/p-toluenesulphonate coated steel samples in

0.2 M NaCl solution. Thickness of the PPy/ToS coatings: (a) 15 um, (b) 22.5 pm, and (c) 30 pm.

—Thicknessof the : 2

Steel -0.620 93.71

Steel//PPy/ToS 15.0 0.064 0.19

Steel//PPy/ToS 22.5 0.162 ° 3.41

Steel//PPy/ToS 30.0 0.121 0.44

Corrosion potentials (E,,,,) and redox current (i..4,x) Values for polypyrrole/p-
-toluenesulphonate (PPy/ToS)-coated steel
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TERASE ELEKTROKEEMILINE KATMINE JUHTIVA
POLÜPÜRROOLKILEGA

Katrin IDLA, Andres OPIK, Olof FORSEN

On uuritud juhtivast poliimeerist, poliipiirroolist (PPy), teraselektroo-

dide pinnale elektrokeemiliselt sadestatud katete kditumist NaCl vesi-

lahuses. Piirrooli elektrokeemiline poliimerisatsioon viidi libi 0,2 M

piirrooli ja 0,1 M naatrium p-tolueensulfonaadi (NaTs) vee ja etanooli

segus konstantsel voolutugevusel (2mA/cm?) ja temperatuuril (-5°C)
inertgaasi (N,) keskkonnas. Pinnauuringud skaneeriva elektronmikros-
koobi abil niitasid, et siinteesi tulemusel saadud poliimeeri pind on polii-
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kristalse ehitusega ning koosneb iiksteisega tihedalt kokkukasvanud

graanulitest. Siinteesitud PPy/Ts kilede juhtivus, mis méérati parast nende

eemaldamist metallelektroodilt nelja sondi meetodil, on vahemikus 20—
100 S/cm. PPy/ToS kilega kaetud teraselektroodide korrosioonipotentsiaal
on märkimisväärselt positiivsem terase korrosioonipotentsiaaliga
vorreldes. Terase korrosioonipotentsiaal uuritavas lahuses oli 640 mV

kiillastatud kalomelelektroodi suhtes, PPy/Ts kilega kaetud teraselektroo-

didel aga vahemikus +5O kuni +lBO mV. Kilede kaitseefekti kvantitatiiv-

seks hindamiseks polariseeriti uuritavaid elektroode potentsiodiinaamilisel
meetodil. Tulemused niitavad oluliselt vdiksemaid korrosioonivoolu vaér-

tusi, kinnitades seega juhtivate poliimeeride kasutamise voimalikkust kor-

rosioonikaitsel.

ПРОВОДЯЩИЕ ПОЛИПИРРОЛОВЫЕ ПОКРЫТИЯ

ДЛЯ ЗАЩИТЫ СТАЛИ ОТ КОРРОЗИИ

Катрин ИДЛА, Андрес ЭПИК, Олоф ФОРСЕН

Исследована возможность использования —проводящих

полимеров для защиты стали от коррозии. Электрохимический
синтез —проводящих пленок полипиррола проводился — гальвано-

статическим — методом (2 тА/см2) в системе вода-этанол с

легирующей солью паратолуолсульфоната Harpud (0,1 M) на

стальных электродах при температуре —5°С. Потенциал коррозии
стали, покрытой проводящим полимером в 0,2 М растворе хлорида

натрия, составил относительно потенциала каломельного электрода
50-180 мВ. Приведены результаты электронной микроскопии и

анодной поляризации.
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