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INTRODUCTION

Among ozone treatments, advanced oxidation processes (AOP) have

proved to be very efficient for the destruction of different organic
pollutants. AOP use different combinations of oxidants, irradiation, and

catalysts to generate free hydroxyl radicals in water, that is highly reactive

species that can be of great virtue for complete destruction of organic
micropollutants. The AOP combinations include H,0,/03, H,0,/UYV,
OyJUV, H202/Fe2+ (Fenton reaction), photo-Fenton reaction, ozonation in

alkaline pH, and UV/TiO, (semiconductor photocatalysis). The efficiency
of these oxidation processes depends on the various parameters, such as

oxidant dose, UV-light intensity, pH, etc. They are also compound-
specific. AOP have become quite commonly used for drinking and waste

water treatment.

Ozonation and AOP have been studied for two groups of aromatic

compounds — substituted phenols and polycyclic aromatic hydrocarbons
(PAH) in aqueous media. These compounds are wide-spread in waste

waters and are also anthropogenic contaminants of surface waters.
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EXPERIMENTAL =

Experiments of ozonation and AOP treatment were performed in a

semicontinuous bubble column. The apparatus and experimental conditions as

well as analytical techniques applied are described in previous papers [l, 2].
The concentration of phenols (analytical grade) was 0.4 mM/L.
Concentrations of PAH (obtained from the Aldrich Chemical Company, USA)
did not exceed their aqueous solubility [3]. High performance liquid
chromatography (HPLC) was used for measuring PAH [l] and phenol [2]
concentration. For the analyses of hexane extracts of benzo(ghi)perylene and

benzo(a)pyrene a method based on Shpol'skij effect was applied [4].
All experiments were conducted at 20°C. The processes were studied in

acidic, neutral, and basic media.

RESULTS AND DISCUSSION

The degradation curves of PAH and phenols in different oxidation conditions

were registered in a semicontinuous bubble column with a verification of the

chemosorption regime [s]. The analyses of kinetic curves show that the
reactions are of the first order with respect toboth the concentration of ozone and
PAH or phenols, and the ozonation is of the second order overall.

The reaction rate constants of PAH ozonation, UV-degradation, and AOP
are presented in the Table. The reaction rates for ozonation, 03/H,0,, and

О4/О\У processes for seven PAH studied follow the series benzo(a)pyrene >

pyrene > anthracene > phenanthrene > fluoranthene > benzo(ghi)perylene >

fluorene. The combination of ozone with UV-radiation and hydrogen peroxide
did not show any advantages over ordinary ozonation of PAH; on the contrary,
the second-orderrate constants for AOP followed the series O 3 2 03/ HyO, 2

03/ОУ > 03/UV/H202. -

The behaviour of PAH in ozonation and AOP treatment is compound-
specific; however, some general qualities can be noticed. There is no

acceleration in PAH destruction when combined oxidation methods are

applied, and the reaction rate of ozonation is always higher in acidic and

- not determined.

Fluorene 42x10° - - - 1.7x1073 -

Anthracene 2.7х10* — 2.15х10% 26x10* 1.7x10* 28x107 25x107

Phenanthrene 1.0x10* 1.0x10* — 0.91х10% 0.44х10*% 3.0x10* ' 2.5x10°%
Fluoranthene 95x10° 9.7x10®° 8.3x107 — 6.5х103 2.5х10°3 -

Ругепе 3.6x10° 3.8х10% 3.05x10* 27x10* 1.0x107 8.1x107
Benzo(a)pyrene 5.3х 10% 5.4х10*% 4.7x10* 43x10* — 6.3x107 -

Benzo(ghü)perylene 8.4x10° - - - 5.5%x1073 -

Second-order rate constants k, w 1 s"‘) and first-order rate constants kl*(s‘l) for advanced

oxidation processes of PAH
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neutral media than in a basic one. Thus, the main conclusion of this study
is that the PAH destruction proceeds mostly by molecular ozone.

Therefore, the oxidation system should be designed to guarantee the

maximum concentration of dissolved ozone. In general, ozone proved to

be very effective for the destruction of PAH.
Substituted phenols (such as methyl-, dimethyl-, and chlorophenols) were

investigated to fill the gap in the data on thekinetics of the AOP and to evaluate
the efficiency of these methods for the purification of phenolic waste waters

containing considerable amounts of substituted phenols (in particular, for
industrial waste waters of oil-shale chemical treatment). The efficiency of the

ozonation processes of phenols may be remarkably increased if ozonation is

conducted in basic media (compare Figs. 1 and 2). The addition of hydrogen
peroxide and UV-radiation did not show any acceleration effect on the velocity
of the destruction of methyl- and dimethylphenols by ozone. The substituted

phenols are commonly destructed by ozone more easily than ordinary phenol.
For the posttreatment of the biologically treated phenolic effluent of the oil-shale

chemical industry ordinary ozonation atpH > 9.5 can be suggested.

Fig. 1. Ozonation of individual phenols at pH 3.2 (/, phenol; 2, o-cresol; 3, thymol; 4, 2,3-xylenol
5, 2,6-xylenol; 6, 2,5-xylenol; 7, 3,4-xylenol; 8, 2,3 4-trimethylphenol).
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The reaction rate of ozonation of chlorophenols increased in the series

4-chlorophenol < 2,4-dichlorophenol < 2,3,4-trichlorophenol < 2,4,6-

trichlorophenol < 2,3,4,6-tetrachlorophenol. This means that more

chlorinated phenols are destructed more easily by ozone than

monochlorophenols. -

Among the ozonation by-products of methyl- and dimethylphenols
there are organic acids (both aromatic and aliphatic), hydrogen peroxide,
guinones, and dimers. For chlorophenols the ozonation intermediates have

been identified as chlorobenzoguinones, dioxychlorobenzenes, chlorinated

acids, and dechlorinated phenols.
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TÄIUSTATUD OKSÜDATSIOONIPROTSESSID AROMAATSETE

JA POLüAROMAATSETE SÜSIVESINIKE LAGUNDAMISEKS:

KINEETIKA JA REAKTSIOONIPRODUKTID

Marina TRAPIDO, Jelena VERESSININA

On uuritud asendatud fenoolide ]а poliiaromaatsete siisivesinike

vesilahuste osoonimist ning tdiustatud oksiidatsiooniprotsesside kineetikat

ja reaktsiooniprodukte. Osoonimine osutus nende iihendite lagundamisel
уйра efektiivseks.

| ДЕСТРУКЦИЯ АРОМАТИЧЕСКИХ И

ПОЛИАРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С

ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННЫХ ПРОЦЕССОВ
ОКИСЛЕНИЯ: КИНЕТИКА И ПРОДУКТЫ РЕАКЦИИ

Марина ТРАПИДО, Елена ВЕРЕСИНИНА

Изучались кинетика и продукты реакции окисления замещенных

фенолов, — хлорофенолов и — полициклических — ароматических

углеводородов C использованием комбинированных — процессов
окисления. Простое озонирование оказалось более эффективным
для — деструкции — этих — соединений, чем —комбинированные
окислительные процессы.
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