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Abstract. A zwitterionic intermediate cannot be responsible for negative activation energies of the

reaction. A neutral tetrahedral intermediate is suggested.
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The mechanism of ester aminolyses in aprotic media has been

extensively studied ([l-3] and refs. therein). However, a number of

conflicting conclusions have been published. It is generally believed that

the third-order process, second-order in amine, includes the formation of
an intermediate (Eq. 1):

ester + amine = intermediate —> products. (D)
a b

The second molecule of the amine or any other catalyst is thought to be

involved either in step a or in step b of the reaction. The nature of the

intermediate has still remained an objective of discussions. The emergence
of negative activation energies for ester aminolyses in aprotic solvents

[4,5] may shed light on the mechanism of the reaction. Activation

parameters of aminolyses reactions as well as those of ester aminolyses
have been determined in a few cases only. However, negative activation

energies seem to be inherent to various aminolyses in aprotic media [6-B].
Some examples of activation parameters for aminolyses of esters and
related compounds are presented in the Table.
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Singh and Taft [4] supposed that the strong exothermicity of step a and

the low activation energy of step b (Eq. 1) are responsible for the negative
activation elr_xl%rgy of the reaclt_lign. `Thus, AHY, =AH°+AH, <O, since —AH°>AH;. All inter-

mediates but the zwitterionic tetrahedral one were declined. A zwitterionic

intermediate has also been suggested by other contributors [l-3].

Principally the same explanation of negative activation energy has been

accepted for different aminolyses in aprotic media [6—B].
The purpose of our paper is to point at an inconsistency of the

argumentations cited above.

A generally accepted reaction profile for nucleophilic substitution at

carbonyl carbon, proceeding through a zwitterionic intermediate T, can be

depicted by the top line in the Figure. The reaction rate may be determined by
step a (curve a) or by step b (curve b). Note that the reputedly unstable

intermediate lies higher above the reactants, and AH° > 0. In such cases no

negative activation energy can be observed. The occurrence of negative
activation energy requires a reaction profile like the bottom line in the Figure.
Asithas been shown [l, 4], stepb is rate determining even in the case of good
leaving groups. On the grounds of substituent effects in leaving groups of

esters [l], the transition state is expected to be of ionic character. As the polar
transition state in aprotic unpolar solvents is poorly stabilized, step b cannot be

of low activation energy and thus the int;;l}nediate lies energetically
considerably lower than the reactants, e.g. if AH 15 about 10kcal/mole,
the stability of the intermediate must greatly excee‘c’is this value. A great value

of activation entropy (see the first entries of the Table) cannot be explained
merely by a translational entropy loss suggested by Singh and Taft [4]. It

rather points at the polar transition state capable of arousing a noticeable

structuring in the polarizable solvent.

2 preliminary results from this laboratory. The enthalpies of activation are estimated from the

temperature dependence of third-order rate constants obtained from the ester concentration

determinations by means of g.l.c. Details of the experiment and further results will be published
elsewhere.

Substrate ’ Amine \ Solvent -Refs

p-Nitrophenyl trifluoroacetate =~ n-Butylamine 1,2-Dichloroethane -11.5 -70.9 [4]
p-Nitrophenyl trifluoroacetate ~ n-Butylamine = Chlorobenzene -10.5 -68.9 [4]

Isobutyl trichloroacetate n-Hexylamine n-Heptane 62 42 [5]

Butyl trifluoroacetate n-Butylamine = n-Nonane -8 а

Butyl formiate n-Butylamine = n-Nonane ~0 а

p-Nitrophenyl j
bis(chloromethyl) phosphinate = n-Butylamine Benzene 5.1 [9]
Acetic anhydride Aniline Cyclohexane -1.1 [10]
Acetic anhydride Aniline Chlorobenzene ~0 [10]

Activation parameters for some aminolyses reactions
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Our reasonings can be expressed by Eq. 2. Preassociation of the ester

with a proton-containing amine is highly plausible in aprotic solvents.

Steps a and b may consist of several steps and very probably they do. This

scheme does not exclude catalysis by bases or the occurrence of

zwitterionic intermediates. The transition states in the reaction path can be

either polar or cyclic, depending on reagents and reaction conditions. The

essence of this scheme consists in (1) the process including more steps
than Eq. 1, and (2) the most stable intermediate of the reaction that is an

unpolar tetrahedral compound. The reaction scheme (Eq.2) and its

energetic profile (Figure, bottom line) are consistent with a more general
conception of the preassociation with a consequent occurrence of a

liberated intermediate introduced by Jencks[ll] for nucleophilic
reactions.

(") ?I)...HNHR” B

R—C—OR' +R"NH, AZRC—-OR' ——

a

R OH.NH,R” B O
N/ ||

C ——— R-C-NHR” +B..HOR' — ())
Z N

R'O NHR” b

The unpolar intermediate 7° can be revealed not only by the appearance
of negative activation energy. Although Singh and Taft [4] were not able
to detect the intermediate spectroscopically, its manifestation cannot be

precluded in any other way. Our preliminary experiments are encouraging
in this connection, because in some cases a little delay in the formation of

alcohol with respect to the disappearance of the ester was observed. A

further study is in progress.

Energetic profiles for aminolyses reactions (for notations see text).
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TÄIENDUS ARUSAAMADELE ESTRITE AMINOLÜÜSIST
APROTOONSETES KESKKONDADES

Ants TUULMETS, Agu TALVIK

On niidatud, et laetud bipolaarne intermediaat ei saa pdhjustada
negatiivseid aktivatsioonienergiaid aminoliiiisireaktsioonides. On esitatud

neutraalse tetraeedrilise intermediaadi olemasolu pdhjendus.

K ПОНИМАНИЮ АМИНОЛИЗА СЛОЖНЫХ ЭФИРОВ В

АПРОТОННЫХ СРЕДАХ

Антс ТУУЛМЕТС, Агу ТАЛЬВИК |

Показано, что — заряженное — биполярное — промежуточное
соединение He может обусловливать отрицательные — энергии
активации в указанных процессах. Приведены Ддоводы в Ппользу

существования нейтрального тетраэдрического интермедиата.
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