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Abstract. Water and methanol do not inhibit Grignard reaction by the capture of free
radicals, but ethers do in the case of radical diffusion into the solution.
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Under ordinary conditions, the reaction between metallic magnesium
and organic halides does not start immediately but only after some
induction period. The duration of the latter may vary considerably
owing to the action of different activators and inhibitors [!]. The forma-
tion of Grignard reagent proceeds presumably via the formation of free
radicals and therefore it is reasonable to assume that the inhibitor may
attack these free radicals.

Recently we were able to show that (1) the critical phase of the
induction period is the cleansing of magnesium surface from the oxidic
film by Grignard reagent formed in the beginning of the reaction, (2)
during the induction period the well-known Grignard inhibitors (water,
alcohols, etc.) react only with the Grignard reagent steadily entering
into solution, and (3) at least in the case of n-butyl bromide
no free radicals can be detected in the solution during the induction
period [?].

The behaviour of classical Grignard inhibitors in the actual presence
of free radicals in the solution remains, however, unclear. Therefore
we have chosen Fukui’s reactivity indices [?] for the quantitative com-
parison of the reactivity of possible radical scavengers in their inter-
action with the free radicals. For a radical reaction of some reagent the
reactivity index S;, as approximated by the frontier MO term only,
is defined as follows [3]:

S.— Ciiomo (—B) Ciumo (—B)
' @ — €HOMO T eLumo—a E
where a is the ionization potential of the radical, C and & denote MO
coefficients and the orbital energies of the reagent reaction centre,
respectively, and B is the value of the resonance integral. For sim-
plicity, we assume §=—1 everywhere (cf. [¢]).
The MO coefficients of reagent compounds were calculated using the
semiempirical AM1 method [*®]. In order to model the effect of the
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condensed medium (solution), the self-consistent reaction field method
["-°] was applied. This method accounts for the solvent polarization
effects in the field of the solute molecule. As follows from the discussion
below, these effects are not negligible in the calculation of Fukui’s coef-
ficients for the compounds of the present study.

The common inhibitors of Grignard reaction are water and methanol.
Dimethyl ether, which is experimentally involved as a solvent, was
also modelled in the calculations. So, the calculations were carried out
for two model media, corresponding to the macrosconic dielectric per-
mittivity of ether (D=4.0) and water (D=280.0). In the latter case the
methanol molecule was treated as nucleophilically solvated bv one
water molecule. The obtained reactivity indices were also multinlied bv
the statistical factors eaual to the number of the equivalent hvdrogen
atoms in the molecule in order to obtain scaled relative reactivities of
the reagents towards the variation of free radicals (see the Table).

The results of the calculations for methanol in aqueous solution can
be taken as a proof of the validity of the theoretical method aonlied
bv the present authors. Namelv, the results obtained are fully consistent
with the experimental fact that in water alcohols interact with the free
radicals only throush methylenic hydrogen atoms [11]. The same
anpears to be valid for methanol in ether, and thus water and alcohols
should interfere the Grignard reagent formation quite differentlv, i.e.
if the inhibitors act as radical scavengers, aliphatic alcohols should
behave as strong inhibitors whereas water should exhibit a weak
activitv if any at all. However. this is not the case when ’n-butyl
bromide reacts with magnesium in diethyl ether because both water and
alcohols have a rather similar inhibiting activity [2]. Hence, the cal-
culated reactivitv indices also support our conclusion that the inhibition
of the Grignard reaction does not consist in the capture of free
radicals T21.

The high reactivity index for dimethyl ether suggests that the free
radicals should have been trapped by ether if they had entered the
solution during the Grignard reagent formation and therefore the oro-
cess should have heen totally suppressed even in the absence of the
inhibitors. This makes the idea that all radicals produced in the Grio-
nard reagent formation leave the surface and diffuse freely in solution
at all times questionable.*

It is very likely that only the radicals of low reactivity can flow
into solution and, beine not scavenged by the solvent. return to the
metal surface to give rise to a customary high yield of the Grignard
reagent. Indeed, radical attack on solvent is rarely observed in the
reactions of common organic halides with magnesium T 15]. However.
1-adamantvl radical, the least reactive among the radicals considered
above (Table), exhibits a substantial attack to the solvent [15 16]. Assum-
ing that the reactivity of radicals towards an ether parallels that in
the Grignard reagent formation, it follows unavoidably that the trans-
formation of the radicals into the corresponding Grignard reagent and
their departure from the surface are competitive processes, the latter
leading mainly to products, resulting from the solvent attack.

Our results suggest that the Fukui index approach is fruitful for the
prediction of radical reactivities and therefore can give further informa-
tion on the detailed mechanism of the Grignard reaction in solution,
e.g. the quantitative data on the possible competition between the
Grignard reagent formation process and the reaction with a solvent. .

* For a recent discussion, whether the radicals leave the surface of magnesium: and
flow permanently into solution or not, see [1213] and papers cited therein,
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Calculated Fukui’'s reactivity indices for the reaction of various free radicals
with water, methanol, and dimethyl ether

Reactivity indices 2

RS, Me* Ph n-Bu t-Bur 1-Ad-®
Dimethyl ether ¢ (C—H) 0.744 0.552 0.192 0.133 0.121
Methanol ¢ (C—H) 0.327 0.255 0.138 0.107 0.094
Methanol ¢ (O—H) 0.018 0.019 0.021 0.023 0.025
Water ¢ (O—H) 0.042 0.043 0.048 0.052 0.055
Methanol ¢ (C—H) - 0.441 0.270 0.156 0.115 0.106
Methanol ¢ (O—H) 0.014 0.015 0.016 0.018 0.019
Ionization potential of the free radical,
eV [17] 9.84¢ 9.25 8.02 6.70 6.21

a Multiplied by a statistical factor, equal to the number of the equivalent hydrogen
atoms.

b ]-Adamantyl.

¢ In the ether medium.

4 In water, reagent nucleophilically solvated by a water molecule.

¢ Our AMI1- UHF calculations gave an ionization potential value 9.88 eV.
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KAS GRIGNARD’I REAKTSIOONI INHIBEERIMINE VOIB

SEISNEDA VABADE RADIKAALIDE PUUDMISES? FUKUI

REAKTSIOONIINDEKSITE ARVUTAMINE AMI-MEETODIL
POTENTSIAALSETE RADIKAALIPUUDJATE TARVIS

Ants TUULMETS, Mati KARELSON

Kasutades poolempiirilist AMIl-meetodit ning modelleerides kesk-
konna moju kooskolalise reaktsioonivdlja meetodiga arvutati voimalike
Grignard’i reaktsiooni inhibiitorite Fukui reaktsiooniindeksid moningate
tidipiliste radikaalide puhul. Tulemused kinnitavad eksperimentaalselt
tuvastatud fakti, et vesi ega alkoholid ei inhibeeri Grignard’'i reaktsiooni
vabade radikaalide piiiidmisega, kuid eetrid vdivad seda teha juhul, kui
radikaalid difundeeruvad lahusesse.

BO3MO)XHO JIW UHTUBUPOBAHUE PEAKUHWHU TPHHbBSPA
YJABJIUBAHUEM CBOBOJHbIX PALUKAJIOB?
BbIYUCJIEHUE PEAKLLMOHHBIX UHIAEKCOB ®YKYS OJis
NMOTEHLHUAJIbHBIX JIOBYWEK PAJUKAJIOB METOLOM AMI

Antc TYYJIMETC, Matu KAPEJICOH

C nomolibio moJysMnupHyeckoro wmeroga AMI W MojAe/lHpOBaHHEM
3(deKTOB cpeabl METOAOM CaMOCOrJIaCOBAHHOIO pPEaKLHOHHOro MoJisi BhI-
YHCJIEHBI peaKLHOHHble HHAEKCH PyKys AJs NOTeHLUHaJbHBIX HHFHOHTODOB
peakuuu [ pHHbSpAa OTHOCHTEJNBHO HEKOTOPBIX THIHYHBIX pajHKaaoB. Pe-
3yJIbTAThl MOJATBEPKAAIOT 3KCIEPHMEHTAJbHO YCTAaHOBJEeHHble (aKTh, YTO
BOZla H CIIHPTHl He HHIHOHPYIOT peakuHio ['pHHbspa yJaB/HBaHHEM CBO-
60aHBIX pajAHMKaJoOB, a MpocThie 3(GHPH Ccrnoco6HBl K 3TOMy B ciyyae
AH(GYy3HH pajHKaJOB B PacTBOP.
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