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COMPARISON OF SAMPLE CONCENTRATION METHODS AND
CORRELATION CHROMATOGRAPHY FOR POLYMER DYNAMIC
HEADSPACE-STUDIES

Abstract. Gas chromatography (GC) was used to study the kinetics of the evolution of
volatile substances from the polypropylene sample (at 70°C). Correlation chromato-
graphy (CC) and the trapping of volatile substances onto sorbents Tenax and activated
charcoal were employed to improve the detector signal. As a reference, the kinetics
of gas evolution was studied by making a series of direct single injections of polymer
headspace gas to the GC column. The results of trapping differed from those obtained
by CC. However, the data collected by single injections and CC were in good agree-
ment. The CC method was found to offer far more operator convenience for dynamic
headspace analysis than sample trapping, thus being less subject to errors due to the
operator’s mistakes.

Introduction

Analysis of the quantitative and qualitative composition of polymer
volatile substances (“headspace”) is of utmost importance in estimating
the suitability and applicability of a given polymer material to e. g. the
food or the pharmaceutical industry [!]. Dynamic headspace analysis
of solid material involves a continuous removal of the gas phase above
the condensed phase by means of a gas flow followed by sampling of
the evolved gases to an analytical device (such as gas chromatograph)
directly from the flow or after trapping/releasing the evolved compo-
nents. The trapping is performed either onto sorbents or into a cryo-
genic trap, the compounds trapped being released by extraction or by
heating the trap. .

While the total amount of the evolved compounds is of importance
from an analytical point of view, the kinetics of gas evolution from a
polymer matrix has a theoretical value in view of the understanding
of many physical and chemical properties of the material under study.
Frequently, the amount of gas evolved from a polymer is so small that
a direct single injection of polymer headspace to the GC does not
quarantee the necessary detection limit and the concentration of the
evolved gas by trapping is inevitable. Trapping techniques have been
extensively studied (e.g. [>*]). Also, proper equipment is available on
the market [>¢]. Despite its wide application, disadvantages of the trap-
ping/releasing procedure are well known. These are fog formation in
cryogenic traps, the danger of trapped compounds degradation during
heating, the possibility of selective and irreversible adsorption of sample
gases on the trap surface or its catalytic activity [7].
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As an alternative to trapping, correlation chromatography [8] offers
direct introduction of a sample to the chromatograph, using a pseudo-
random injection of the sample gas. As a noise suppression method,
CC enables a decrease in the detection limit down to two orders which
is sufficient in practice. The advantage of CC is that the result can
be obtained without any physical or chemical modification of the sample.
On the other hand, however, CC has its own problems. The method is
critically sensitive to sampling device quality: CC needs a stable and
perfect injection device. The degree of perfection required can be esti-
mated [8], though in general the variation of the amount of the gas to
be injected should be lower than 59%. Also, the injection profile should
be reproducible or if the sample flow is modulated by a sampling device,
transitions in the sample concentration in the column _input from
maximum to zero and vice versa should be done during an infinitely
short period of time. All the deviations from ideality generate “ghost”
peaks on correlograms, i.e. chromatograms calculated from the detector
output. The CC theory can predict the pattern and intensity of ghost
peaks very precisely [%°]. The absence of commercially available instru-
mentation with a proper input system and software is, in our opinion,
the main reason for a low use of CC. However, recent studies have
demonstrated that at least a Valco ten port HPLC sampling valve can
be applied to liquid CC without causing any problems with “ghost”
peaks [*°]. It has also been shown that a pneumatic sampling valve of
Dean’s type can be successfully applied to GC [*] together with thermal
and chemical modulators [ 13].

Although possibilities and limitations of CC as a trace analysis
method as compared to classical techniques have been discussed and
criticized in literature [*%], no studies are available on the application
of trapping/desorption and CC to the same object in conditions as similar
as possible. In this respect the dynamic headspace of polymers offers
a good object for comparative studies because by choosing a proper
heating temperature of a polymer, the amount of the gas evolved can
be adjusted to a convenient level of measurement for direct single
injections, CC, and trapping. In the present paper, a polypropylene sample
was chosen as a model. We analysed only the qualitative composition
of polypropylene headspace (reflected in the chromatogram patterns)
and its evolution kinetics. Estimation of absolute quantities of the
evolved gases that can be detected by both methods and comparison of
CC and cryogenic trapping will be the subject of further studies.

Experimental

Chromatography. Chromatographic analysis was made by a Carlo Erba
4200 chromatograph with a flame-ionization detector. The column was
a metal capillary column (15 m X 0.5 mm, Perkin-Elmer) coated with
liquid phase Carbowax 20M. The injector port of the chromatograph
was replaced by the reactor used for thermochromatographic measure-
ments [*] and a home-made pneumatic valve. The reactor and the valve
were on line with the capillary column. The reactor consists of a quartz
tube (15 em X 4 mm) whose temperature can be kept constant or
programmed from ambient to 600°C at a rate of 1—20°C. The pneu-
matic valve makes use of the pressure switching idea for sample intro-
duction (proposed by Deans [%]). The valve geometry is given in ['7].

Experiment control and data acquisition. Experiment control and data
acquisition were performed with an Apple Ile computer through home-
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made interface cards and software. The detector signal was recorded with
a digitization interval of 0.5 s using a 23-bit analog-to-digital converter
(Design Bureau, Institute of Cybernetics, Estonian Academy of Scien-
ces). The software enables to control the sampling of the products
evolved from the reactor to the column either at equal intervals or
pseudorandomly as required in CC. In all CC experiments, a pseudo-
random sequence of 511 elements was used which enables to theoreti-

cally decrease the detection limit by a factor of }’ﬁ/2=11.3. A chroma-
togram was computed from the detector output via a fast Hadamard
transform.

Purge and trapping. The purge and trapping of polymer headspace gas
was performed in a thermostated quartz tube. The evolved products
were carried to the sorbent tube (3 em X 2 mm quartz) by N, The car-
rier gas was dried by silica gel and filtered by molecular sieves before
entering the purge and trap reactor.
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Fig. 1. Kinetic curves for evolved gases recorded by different methods.
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Materials. The polypropylene sample studied has the following charac-
teristics: density 0.900 g/cm? molecular weight 186 000, melting point
158°C, ethylene amount 499, and crystallinity 40.1%. Two sorbents
were used: Tenax (Ohio Valley Spec. Chem. Inc.), 7 g, and activated
charcoal, 27 g, (SKT, made in USSR). SKT is a peat-based product
used as sorbent for inorganic gas and light hydrocarbon separations
in chromatography [%]. Its surface area is not available to the authors.

Procedure. In case of direct single injections and CC, a 30-mg poly-
propylene sample was in the thermochromatographic reactor which was
heated at 70°C for several hours. Every hour a single injection chro-
matogram or a correlogram was recorded.
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Fig. 2. Normalized chromatograms of evolved gases obtained by different methods.
The numbers on chromatograms represent the relative amplitude of the highest peak of
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the chromatogram. a — blank reactor chromatogram; b, ¢, and d — chromatograms
obtained after 1-, 7-, and 13-hour heating of the polymer, respectively.
SI — single injection, CC — correlation chromatography. Polymer amount — 30 mg.
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In the purge and trapping procedure, the sample was also heated in
the purge and trapping device for many hours. Every hour the evolved
products were trapped to the sorbent during the time equal to that
necessary for performing a correlation experiment (usually 4 min). Then
the sorbent tube was replaced by a hollow tube to maintain the set
pressure and carrier flow rate in the purge and trap device. The
sorbent tube was placed into the thermochromatographic reactor in the
chromatograph and the trapped compounds were desorbed using the
temperature program of 20°C/min. The final temperature for Tenax was
270 and for charcoal 350°C. The desorbed components were carried to
the vent through the Deans sampling valve by an N, flow. In this way
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we have a gas stream with desorbed components in it. During the
desorption cycle, the samples were taken from this stream to the column
at equal time intervals (2 min) and the chromatograms were recorded.
When the desorption cycle was over, all the chromatograms were added
by computer to get a total chromatogram of the desorbed products.
The sorbent tube was kept at the final temperature for 45 min to release
the small amount of the gas remaining in the sorbent. The level of the
residual exponentially decreasing signal was monitored chromatograph-
ically and when the signal was negligible compared to that from the
desorbed gas, the tube was taken off the reactor and put into the head-
space gas flow to start the next desorption cycle.
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Fig. 3. Normalized chromatograms of evolved gases measured by different methods.
Polymer amount — 45 mg. See Fig. 2 for explanation of symbols.
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This kind of desorption technique was applied for two reasons. First,
although in principle a few commercially available instruments are suit-
able for dynamic headspace analysis, it is difficult to find one meeting
all the requirements [*¥]. Though the authors have no commercial
purge/trap device in their laboratory, this approach enables to imple-
ment our thermochromatographic reactor for the controlled heating of
the sorbent tube. Secondly, desorbing the bulk of the gas to the vent
and simultaneously performing short-duration injections of the flow to
the column at regular intervals, the required resolution of headspace
component peaks can be maintained. A conventional approach is to col-
lect all the gas released to the cryogenic trap, but the trap is an
additional source of errors which we tried to avoid this time. In our
approach, most of the trapped headspace gas is lost, thus the method
is not acceptable as a usual analytical procedure, but it should be
tolerable for our comparative study for the reasons already mentioned.
We compensated for the loss of sighal by increasing the polymer
amount in the purge/trap reactor by a factor of 10—100 compared to
that used in CC and cases of single injection. It is clear that this
approach makes it difficult to compare detector limits for CC and trapping
and therefore, as already mentioned in the “Introduction”, no such com-
parison was made in our paper.

Check for trap breakthrough. The trap breakthrough time was tested by
collecting the evolved gas to the sorbent during 5, 10, 15, 30, and 45 min.
A dependence of the peak areas of desorbed compounds on the heating
time was found to be linear with the correlation coefficient 0.965 for
Tenax and.0.997 for charcoal within the sorption time interval used. This
is the condition for the conservation trapping where the amount of gas
adsorbed is proportional to the trapping time [?°] and, in principle, quan-
tification of the sorbed gas could be possible.

Results

Kinetics of evolution. The rate of evolution of the polypropylene head-
space gas as a function of time is presented in Fig. 1. The curves
represent relative intensities and have an arbitrary y-axes offset for
graph clearness.

The experimental points obtained by single injection and CC can be
approximated by an empirical function proportional to {95 for both the
sets, where ¢ is time. The dispersion of the points on the curves obtained
by using a sorbent is very wide and although for charcoal some decay
is apparent, there is little evidence of some functional relation behind
the set of sorbent points.

The chromatograms of the products evolved after 1-, 2-, and 13-hour
heating of polypropylene are presented in Fig. 2. The better resolution
of correlogram peaks results from the fact that the injection time used
was shorter by a factor of 4 in the case of CC. When compared to single
injection chromatograms, the correlograms still have a higher signal to
noise ratio. This results from the multiplex advantage of CC [*]. The
chromatograms obtained by Tenax generally follow the single injection
chromatogram pattern, although the peaks intensity distribution does
not always coincide with that of single injection chromatograms. The
pattern of chromatograms obtained by charcoal is quite different from
the others. The good signal to noise ratio of the chromatograms obtained
by Tenax and activated charcoal is due to the fact that the amount of the
polymer (3 g) is 100 times bigger than that used in the CC experiment.
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Influence of background. In determining ultra low concentrations of
target compounds in the evolved gas flows the purity of the carrier gas
and the amount of the gas sorbed on the reactor vessel walls are of
even higher importance than the overall detector noise power value be-
cause peaks of the components existing in the carrier matrix in higher
concentrations than target components can easily mask target com-
ponent peaks on. chromatograms. To investigate the influence of the
background signal to the chromatograms of the evolved products, the
injection time and the polymer sample amount were reduced to the
values comparable to those used in CC experiments. As in the previous
case, the trapped and released gas amounts did not follow any tendency
during the heating of the polymer. The chromatograms obtained after
1-, 7-, and 13-hour heating are presented in Fig. 3. The pattern known
from a single injection chromatogram can be hardly recognized in the
noisy chromatograms obtained from Tenax. The chromatograms obtained
from charcoal have a high signal to noise ratio, but the pattern does
not  resemble 'single injection chromatograms at all. Its comparison
with the blank signal of the purge and trap reactor shows that what
was trapped by activated charcoal is the reactor blank.

Discussion

If direct injection of polymer headspace gas is considered as a
reference signal representing correctly the qualitative and quantitative
composition of the evolved gas, it follows from our measurements that
also CC can represent the composition accurately. Problems arise when
trapping is used. As follows from Figs. 2 and 3, Tenax releases the
sorbed components almost correctly although the distribution of peak
intensities does not necessarily coincide with that of single injection.
The trapped amounts of gas, however, have wide dispersion indicating
no decay (Fig. 1). This behaviour is not clear because, as demonstrated
in the “Experimental” part of this paper, it cannot be explained by
the trap breakthrough during the desorption cycle. One probable reason
for this may be some unknown factor in the operator’s activity on per-
forming measurements; e. g. despite a careful control of carrier press-
ures and flow rates over polymer and sorbent tubes in purge/trap and
thermochromatographic reactors during experiments, some leaks of fit-
tings and sealing may happen. Operations with sorbents require care
and are labour-consuming, thus human errors are not ruled out.

What has been said about Tenax is valid also for activated charcoal.
This sorbent seems to be suitable for the analysis of light nonpolar
components but adsorbs irreversibly more polar and heavier ones. Tenax
appears to be more suitable for trapping gases with heavier molecular
weights. Such behaviour of these sorbents is well known.

The results obtained are an indication of the difficulties appearing
in determining polymer headspace gas by using sorbents. As headspace
instruments are mostly home made then, as stated in [*], difficulties
arise mainly in connection with apparatus manipulations. Our experience
confirms this conclusion. Problems of the influence of the catalytic
activity of sorbent surface and irreversible adsorption also remain when
using these instruments. We, however, realize that if commercial instru-
ments with a different methodology of analysis are used, the advantage
of CC over trapping might not be so dramatic as our results indicate.
Nevertheless, this demonstrates even more vividly the critical dependence
of the trapping results on the materials and equipment used, as well as
the analyst’s experience. CC as a completely automatic direct method
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of analysis is less prone to operator errors. Especially for kinetic mea-
surements the result can be obtained simply by reorganizing the mea-
surement process itself, not by chemical manipulations on the sample.
Theoretical predictions that CC can suppress noise are also confirmed
by our results (compare results of single injection and CC).

Carrier matrix impurities peaks do not appear in the chromatograms
even in the reactor blank signal (Fig. 2 CC.a) because the concentra-
tions of impurities in the pure carrier and the sample are the same. This
possibility of differential measurements was first pointed out in [2].
This property of CC enables to construct measurement systems where
some classes of impurities are pseudorandomly filtered out by suitable
selective sorbents applying some physical/chemical action on sorbent.
This idea is implemented by chemical modulation input systems [ %].
The idea can be developed even further by imaging input systems where
the sample is introduced into the column by modulating between two
sample flows: one with the class of impurities of interest and the other
without them. The advantage of this system should be that there is no
need to worry about the processes taking place on the sorbent as far
as it adsorbs the necessary components completely. ;

Several disadvantages of the CC method were already pointed
out in the beginning of the paper. Introducing CC into a laboratory
when there are no ready-made instruments in the market is a somewhat
challenging task requiring (besides knowledge of computational mathe-
matics and system identification theory) a good motivation.

Conclusions

The results of comparison of trapping and CC for polymer headspace
analysis are summarized in the Table.

Comparison of CC and trapping methods for polymer headspace analysis

Trapping Correlation chromatography
Advantages
1. Commercial equipment is available 1. Direct method: no sample pretreatment
2. Wide experience of analysts 2. Fool-proof procedure: no operator’s ex-
perience is needed
3. High sensitivity can be obtained 3. Convg,nient method: analysis is auto-
mate

4. Influence of the impurities in the car-
rier gas is excluded

Disadvantages

1. Catalytic activity and irreversible ad- 1. No commercial equipment is available
sorption of sorbents changes the sample
composition

2. The procedure involves a lot of manipu- 2. The, theoretical basis still requires re-
lations with traps that require extreme search
care ;

3. Not all factors generating the signal 3. The signal enhancement practically
are known to the analyst reaches two orders only
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Mihkel KALIURAND, Vaike TAKIAS

KORRELATSIOONKROMATOGRAAFIA JA PROOVI KONTSENTREERIMISE
KUI POLUMEERIDE AURUFAASI DUNAAMILISE ANALUUSI
MEETODITE VORDLUS

Poliipropiileenist eralduvate gaaside aurufaasi lendumise kineetika uurimiseks
kasutati gaasikromatograafia meetodit. Detektori signaal—miira suhte parandamiseks
kasutati korrelatsioonkromatograafiat (KK) ja lenduvate produktide piiiidmist sorben-
tidele «Tenax» ja aktiivsiisi. Kontrolliks moodeti gaaside eraldumise kineetikat proovi
sisestamisel kolonni iiksiksiistide jadana. Tulemused, mis saadi aurufaasi sorbeeri-
misega «Tenaxile» ja aktiivsoele, erinesid nendest tulemustest, mis saadi KK abil. Vii-
mase meetodi puhul saadud tulemused olid aga heas kooskdlas iiksiksiistide jada
sisestamisel saadud tulemustega. Ka osutus KK-meetodi kasutamine analiiiitikule palju
mugavamaks kui proovi sorbeerimine «Tenaxile» ja aktiivsoele. Selle tottu on analiiii-
tiku subjektiivsete eksimuste oht korrelatsioonkromatograafia kasutamise korral palju
viiksem kui sorbentide kasutamisel.

Muxkeas KAJIBIOPAH]I, Baiixe TAKSC

CPABHEHHE METOJLOB KOHUEHTPHPOBAHUSI U KOPPEJISILLUOHHOH
XPOMATOrPA®HH NMPH JNHUHAMHYECKOM NAPO®A3HOM AHAJIHU3E
NOJIMMEPOB

Hsyvena KHHETHKA BHIJeJ€HHsI JIeTYYHX NPOAYKTOB H3 moJaunponuaena npu 70° C
METOAOM rasoBofi xpomarorpaduu. [Iisi yMeHblleHHS Npeje/a ACTeKTHPOBAHHS NPHMEHEHb
METOAH KOHIUEHTPHPOBAHHSI H KOppeasiinoHHas xpomatorpadusi. [Tokasano, uto nocjeauss
obecneunBaer nosydeHne GoJiee HafAEKHHIX Pe3yJbTATOB.
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