https://doi.org/10.3176/chem.1989.2.02

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. KEEMIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ХИМИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. CHEMISTRY

1989, 38, 2

УДК 662.67.66.060

Х. ЛУИК, Лилья ЛАХЕ, И. КЛЕСМЕНТ

ОЖИЖЕНИЕ КОНЦЕНТРАТА КУКЕРСИТА В АВТОКЛАВЕ В ПРИСУТСТВИИ HCOONa, (NH₄)₂CO₃ и (NH₂)₂CO

(Представил Ю. Канн)

Органическое вещество (ОВ) сланца-кукерсита исследовалось разными методами термической деструкции — пиролизом (в микрореакторе в токе инертного газа [1, 2] и паров воды [3], в реторте при режиме полукоксования по ГОСТу 3168-66 и ускоренных режимах [^{4, 5}]), гидрогенизацией (в присутствии разных катализаторов, а также без катализатора [6,7]) и ожижением в автоклаве в присутствии самых разных растворителей (бензол, толуол, гексан, циклогексан, их смеси с водой, вода [8], тетрагидрофуран [7, 9], метанол, этанол, 2-пропанол и их смеси с водой [10]). Полученные в инертных, восстановительных, окислительных и восстановительно-окислительных условиях смолы и экстракты характеризуют кероген с разных сторон, а также служат источником геохимической информации. Несомненный интерес представляют и технологические аспекты, нахождение возможных альтернативных способов переработки. Таким образом, кукерсит является многосторонне изученным горючим сланцем и его применение в качестве объекта для разработки новых методик и исследования действия разных реактивов вполне обосновано.

Целью настоящего исследования являлось изучение действия HCOONa, (NH₄)₂CO₃ и (NH₂)₂CO на выход и состав продуктов термической деструкции керогена кукерсита. Образующиеся in situ при разложении этих реагентов газы — H₂, NH₃ и CO₂ — создают химически активную атмосферу ожижения, взаимодействующую с реакционноспособными фрагментами OB. Однако их действие на геоорганический материал изучено мало.

Экспериментальная часть

Термическую деструкцию проводили во вращающихся автоклавах рабочим объемом 20 см³, которые нагревали в термостате до заданной температуры со скоростью 4 °С/мин и выдерживали при этой температуре 4 ч (исследовали температурный интервал от 330 до 400 °С). Весовое соотношение реагента (8 г) и концентрата кукерсита (содержание OB 92,4%) (4 г) во всех опытах было одинаково — 2:1. Жидкий продукт (экстракт) вымывали из автоклава бензолом и отделяли от твердого остатка на стеклянных фильтрах № 40. Твердый остаток (полукокс + непрореагировавший реагент + Na₂CO₃ в случае формиата натрия) после фильтрации бензолом тщательно промывали горячей водой и высушивали при 105 °С. Выход газа определяли взвешиванием автоклава до и после открытия. Бензол отгоняли из фильтрата в ротационном испарителе под вакуумом.

Экстракты подвергали дальнейшему исследованию хроматографическими и спектральными методами. Асфальтены осаждали из суммарных экстрактов, растворенных в хлороформе, *н*-гексаном. Растворившуюся в *н*-гексане часть (мальтены) разделяли методом препаративной тонкослойной хроматографии на группы соединений. Индивидуальные соединения в группах определяли с помощью газожидкостной хроматографии на анализаторе «Хром-4» в условиях программирования температуры на колонках 4% Е 301 на Хроматоне N-AW-HMDS (0,125— 0,160 мм), 3,6 м×3 мм.

ИК-спектры снимали на спектрометре «Specord 75 IR», их количественные расчеты проводили по методике [¹¹].

Количественное определение органического элементарного углерода, водорода и азота осуществляли на анализаторе 186 СНМ фирмы «Hewlett Packard» (США), содержание кислорода рассчитывали по разности.

Обсуждение результатов

Можно было ожидать, что в настоящей работе главным параметром, определяющим выход и состав образующихся продуктов, будет температура ожижения. При повышении температуры увеличиваются и степень разложения (NH₄)₂CO₃, (NH₂)₂CO и HCOONa на активные газы, и степень превращенности самого керогена. Таким образом, максимальное количество жидкого продукта реакции получается при температуре, соответствующей «компромиссной» — такой, при которой образующиеся из реагента газы (определяющее значение имеет парциальная доля реакционноспособного газа) и термобитум, получающийся в результате битуминизации из керогена, имеют сбалансированное (стехнометрическое) соотношение. Следовательно, температура должна быть, с одной стороны, не выше той, при которой в результате крекинга начинается интенсивное газообразование из уже образовавшегося первичного жидкого продукта, а с другой — не ниже той, при которой кероген и реагенты еще остаются термически стабильными. Поэтому нахождение такой промежуточной температуры — неизбежный и очень важный для оптимизации всего процесса этап.

Экспериментально найденные зависимости (рис. 1 и 2) свидетельствуют о том, что оптимальной температурой реакции является 380 °С, ей соответствует максимальное количество целевого конечного продукта — химически модифицированного экстракта, образующегося в избыточной агрессивной газовой атмосфере. В отличие от формиата натрия (NH₄)₂CO₃ и (NH₂)₂CO, согласно реакционным уравнениям, разлагаются только на газовые продукты, причем реальное соотношение исходного и газовых продуктов определяется равновесными условиями, соответствующими реакции в автоклаве. Установлено, что в примененных в настоящей работе условиях при 380 °С из взвешенного в автоклав (NH₄)₂CO₃ или HCOONa разлагается соответственно 80 или 45%.

Установлено также, что прибавление воды в автоклав не способствует ни разложению этих реагентов, ни повышению выхода экстракта. Карбамид, однако, в значительной мере разлагается только в присутствии воды. Чем больше образуется из реактива газа, тем больше и выход экстракта. Поскольку сухой карбамид разлагается мало, то выход экстракта в его присутствии самый низкий. При разложении формиата освобождается in situ активный водород в количестве, достаточном для получения высокого выхода экстракта (80% от OB).

Из рис. 1 и 2 видно, что при температурах ниже 330 °С кероген и реагенты разлагаются одинаково медленно, а при температуре выше 380 °С начинается крекинг первичного экстракта, особенно резко при высоком выходе экстракта. Таким образом, при прочих равных условиях (время ожижения 4 ч, соотношение кероген : реагент 1 : 2, степень заполнения автоклава 0,6) при 380 °С получается максимальное количество экстракта. Представленный в табл. 1 материальный баланс продуктов ожиже-

ния при таких оптимизированных условиях показывает, что потери в виде полукокса минимальны при ожижении в присутствии формиата (как и ожидалось). При каталитической гидрогенизации под давлением водорода (30—50 МПа) полукокса образуется также мало, а основные потери ОВ связаны с газообразованием. В настоящей работе давление было более низкое, но количество водорода при этом достаточное для получения высокого выхода гидрогенизата. При ожижении с (NH₄)₂CO₃ выход экстракта в 5 раз выше, чем при ожижении с (NH₂)₂CO. Из обоих реагентов образуются NH₃ и CO₂, но в существенно разных количествах, в результате чего и давления в обоих процессах не сравнимы. При деструкции керогена с (NH₂)₂CO выход экстракта не превышает 12%, т.е. уступает в несколько раз выходу при «сухом ожижении» (ожижение керогена в автоклаве без какого-либо растворителя или реагента). Вполне очевидно, что при такой низкой степени разложения карбамида ожижение происходит при явном дефиците реакционноспособного аммиака. Неразложившийся карбамид, смешиваясь с порошком керогена, также ухудшает массо- и теплопередачу и изолирует кероген от газовой атмосферы. При ожижении горючего сланца Джамского месторождения Узбекской ССР мы применяли водные растворы карбамида, в результате чего выход экстракта удвоился и стал равным выходу, полученному с (NH₄)₂CO₃ [¹²]. В данном исследовании воду в качестве химического реагента не использовали.

Таблица 1

Материальный баланс	продуктов	ожижения	керогена.	Условия:
температура ожижени	я 380 °С, вр	емя 4 ч, со	отношение	реагента
(8 г) и кон	центрата к	укерсита (4 r) 2:1	NUCCESSIES.

Продукты	putare any com	Ожижение в присутствии				
	HCOONa	(NH ₄) ₂ CO ₃	(NH ₂) ₂ CO			
Экстракт	78,6	60,1	12.3			
Полукокс	· 6,9	23,9	74,6			
Газы	14,5	16,0	13,1			

Химизм взаимодействия HCOONa, (NH₄)₂CO₃ и (NH₂)₂CO с керогеном кукерсита отражается на составе полученных экстрактов, качество которых исследовалось методами жидкостной экстракции, элементного анализа, хроматографии и спектроскопии.

Исследование зависимости содержания асфальтенов от температуры на двух существенно по-разному химически обработанных экстрактах показало, что при температурах ниже 330 °С и выше 400 °С содержание асфальтенов в обоих экстрактах одинаково низкое (рис. 3). Максимальные величины установлены в экстракте, полученном при воздействии (NH₄)₂CO₃ при 360—370 °С (40% от суммарного экстракта), и в экс-

тракте, полученном при воздействии HCOONa при 380 °С (36%). Известно, что битуминизация керо- 50гена кукерсита начинается около 🗄 350 °С, при более низких температурах и кратковременном (1-4 ч) 😤 контакте кероген разрушается ма- 2 30ло. Начиная с 400 °С в замкнутой # системе кероген и образующиеся 🛔 из него асфальтены подвергаются глубокому разрушению и, в конечном счете, ОВ четко распределяется между смолой, коксом и газом. На основе вышеизложенного и рис. 3 можно заключить, что из-за разного действия применяемых реагентов на кероген и на образующийся из него экстракт содержание высокомолекулярных соединений в экстрактах заметно различается.

Рис. 3. Зависимость содержания в экстракте асфальтенов от температуры. Ожижение в присутствии HCOONa (1) и (NH₄)₂CO₃ (2).

Суммарные экстракты отличаются и по элементному составу (табл. 2). В присутствии азотсодержащих реагентов происходит заметное внедрение азота в состав экстракта (употреблялось 1—6% азота от его источника). Собственного азота кукерсит содержит мало, но вследствие аммонолиза в экстракте образуются азотсодержащие функциональные группы, отсутствующие в исходном материале. Возможность синтеза продуктов с заданными функциональными группами на основе керогена, по всей вероятности, должна повысить интерес к процессам химического превращения керогена в плане создания альтернативы его экстенсивному использованию в качестве топлива.

В результате гидрогенизации за счет водорода, высвобождающегося при разложении формиата, содержание водорода в экстракте повышается. Поскольку водород является легким элементом, его присоедине-

Таблица 2

	Элементны	й состав экстр	актов			
Реагент или растворитель	21	Содержание, %				
	C	Н		N O+S		
HCOONa	80,1	10,5	следы	9,4		
(NH ₄) ₂ CO ₃	78,8	10,3	6,3	4,6		
(NH ₂) ₂ CO	74,8	9,8	8,5	7,9		
H ₂ O	82,1	10,3	следы	7,6		
C ₆ H ₆	81,5	10,0	,,	8,5		
Без растворителя	83,7	9,4	agNR +=CO	6,9		

ние выражено не так ярко, как присоединение азота. В гидрогенизатах содержание гетероатомов обычно низкое, бо́льшая часть О, S и N превращается в низкомолекулярные продукты — H₂O, H₂S и NH₃, но в результате действия HCOONa в экстракте сохраняется бо́льшая часть гетероатомов. Здесь может быть два объяснения. Первое: происходит непосредственное присоединение водорода к ненасыщенным фрагментам и кратным связям без ощутимого разрушения скелета основных составляющих единиц, в результате чего сохраняется собственный запас гетероатомов керогена. Второе: в сложном комплексе реакций одновременного разложения HCOONa и керогена из формиата образуется CO, который способен активно участвовать в экстрактообразовании.

Судя по групповому составу (табл. 3), во всех экстрактах превалируют сильнополярные соединения, особенно в экстрактах, полученных в присутствии азотсодержащих реактивов (до 3/4 от всего группового состава). По всей вероятности, образующиеся в результате аммонолиза азотсодержащие соединения накапливаются в сильнополярных фракциях. В экстрактах, полученных в присутствии (NH₄)₂CO₃ и (NH₂)₂CO, самое меньшее количество алифатических и нейтральных кислородных соединений. Асфальтенов во всех экстрактах меньше, чем мальтенов. По сравнению со смолой полукоксования в экстрактах значительно меньше многоядерных аренов. Это и понятно, ведь эти соединения являются, в общем, вторичными, они образуются при высоких температурах в результате крекинга первичных. Как было сказано выше, при 380 °C в автоклаве заметного превращения экстракта, выражающегося и в уменьшении его количества, не происходит.

Действие реагента отражается и на составе индивидуальных соединений суммарных экстрактов (рис. 4). На хроматограмме экстракта, полученного в присутствии HCOONa (рис. 4А), превалируют *н*-алканы до гептадекана, другие соединения имеют подчиненное значение. На хроматограмме экстракта, полученного в присутствии (NH₄)₂CO₃ (рис. 4Б), основными пиками также являются пики *н*-алканов, но видны пики и ароматических, и кислородсодержащих соединений. Особенностью хроматограммы, отличающей ее от хроматограммы 4А, является значительное количество высококипящих соединений, а также иные кон-

Таблица 3

CARDon of Berlin Post of Contraction	Ожижение в присутствии					
Группа	HCOONa	(NH4) 2CO3	(NH ₂) ₂ CO	C ₆ H ₆	H ₂ O	без раство- рителя
Мальтены						
алифатические углеводороды	13	8	7	12	13	10
моноядерные ароматиче- ские углеводороды	3	3	3	- 4	4	4
полиядерные ароматиче- ские углеводороды	6	5	7	7	8	16
нейтральные кислородные соединения	9	7	8	17	18	оо-(ни) 0 11 ни)
сильнополярные соединения .	66	77	75	60	57	59
Асфальтены	36	37	39	47	37	30

Групповой состав суммарных экстрактов, вес. %

центрации индивидуальных *н*-алканов. Это и понятно — мы имеем дело с разными продуктами химической модификации керогена ку-керсита.

ИК-спектры суммарных экстрактов, полученных в присутствии азотсодержащих реактивов, похожи, но существенно отличаются от ИК-спектра экстракта, полученного в присутствии HCOONa (рис. 5). Две полосы поглощения при 3300 и 3450 см⁻¹ соответствуют асимметричным и симметричным валентным колебаниям аминогруппы, широкая полоса поглощения при 1640—1560 см-1 соответствует плоским, а при 900-650 см-1 - неплоским деформационным колебаниям N-H в аминогруппе. Полоса при 1230—1030 см⁻¹ с абсорбционным максимумом при 1170 см-1 относится к валентным колебаниям C-N.

В экстракте, полученном с HCOONa, сильно выражены поглощения метиленовых и метильных групп: при 2950—2850 см⁻¹ (ва-

Рис. 4. Хроматограммы суммарных экстрактов, полученных ожижением в присутствии HCOONa (А) и (NH₄)₂CO₃ (Б). Цифры над пиками указывают число атомов углерода в молекуле *н*-алкана.

лентные колебания С—Н), при 1460 см⁻¹ (деформационные колебания С—Н метиленовой и метильной групп) и 1380 см⁻¹ (деформационные колебания метильной группы). Кислород во всех экстрактах остается главным образом в гидроксильных (абсорбционный максимум при 3400 см⁻¹) и карбонильных (абсорбционный максимум при 1700 см⁻¹) группах.

Количественный расчет ИК-спектров (табл. 4) проводили сравне-

Рис. 5. ИК-спектры суммарных экстрактов, полученных ожижением в присутствии HCOONa (1), (NH₂)₂CO (2) и (NH₄)₂CO₃ (3).

Таблица 4

Характеристика экстрактов по ИК-спектрам

пезультате действия	Ожижение в присутствии					
Частота (см ⁻¹) и соответствующие группы	HCOONa	(NH4) 2CO3	$(\mathrm{NH}_2)_2\mathrm{CO}+\mathrm{H}_2\mathrm{O}$	H ₂ O	C ₆ H ₆	без раство- рителя
	D	-приведен	ные			
720 (-CH ₂ -) _n	0,21	0,12	0,16	0,27	0,17	0,37
745	0,18	0,12	0,12	0,33	0,11	0,39
815 CH _{ap}	0,22	0,12	0,23	0,33	0,28	0,49
880 J 1380 CH	0,20	0,06	0,07	0,15	0,07	0,24
$1600 C=C_{ab}$	0.67	1.18	1.09	0,83	0.80	0.88
1700 CO	0,38	0,18	0,81	0,85	0,71	0,46
2930 CH ₂	1,02	1,80	0,79	0,80	0,57	1,07
3020 CH_3	0,98	1,29	0,58	0.81	0,50	0,85
3050 CH _{ap}	0,08	0,35	0,02	0,19	0.03	0,05
3400 OH	0,38	0,41	0,74	0,80	0,60	0,63
	(Отношения	D			
2930/2960	1,05	1,36	1,36	0,98	1,09	1,26
3050/2930	0,08	0,20	0,03	0,23	0,10	0,05

нием абсорбционного максимума типичных для всех экстрактов функциональных групп с поглощением при 1460 см⁻¹, имеющим во всех экстрактах относительно стабильное значение [¹¹]. Из табл. 4 следует, что такие структурные единицы в экстрактах неравномерно распределены из-за разных выходов экстрактов и их специфического состава. Экстракт, полученный в присутствии HCOONa, отличается меньшей ароматичностью и меньшим содержанием карбонильного и гидроксильного кислорода. Объясняется это тем, что при самом большом выходе образующийся в условиях гидрогенизации экстракт содержит много насыщенных соединений и прямолинейных углеводородных алкильных цепей.

Таким образом, при ожижении твердых топлив в присутствии термически нестабильных химических реагентов параллельно с разложением ОВ происходят и химические реакции между фрагментами ОВ и реагента. Донором функциональной группы является реагент, алкильную или арильную часть обеспечивает кероген. Можно предположить, что в зависимости от структуры исходного топлива можно получать специфические производные.

Выводы

1. В результате действия химических реагентов на базе керогена могут быть получены соединения с функциональными группами, отсутствующими в исходном керогене.

2. При гидрогенизации керогена с водородом, образующимся при разложении HCOONa, достигается высокий выход экстракта (78,6%) при низкой температуре. В экстракте сохраняются кислородсодержащие структуры, которые разрушаются в условиях деструктивной каталитической гидрогенизации.

- 1. Лийк Х. Реакционно-газохроматографический анализ органического вещества горючих сланцев методами десорбции и пиролиза // Изв. АН ЭССР. Хим., 1983, 32, № 1, 34-39.
- Урмет Э., Клесмент И. Термофрактографический анализ твердых топлив // Изв. АН ЭССР. Хим., 1976, 25, № 4, 276—281.
 Клесмент И., Талвари А. Десорбция углеводородов в испарителе хроматографа под
- Клесмент И., Галвари А. Десороция углеводородов в испарителе хроматографа под воздействием паров воды // Геол. нефти и газа, 1976, № 9, 49—54.
 Наппа Л., Клесмент И., Винк Н., Кайлас К. Низкотемпературное разложение орга-нического вещества горючих сланцев в присутствии растворителей. 1. Кукерси-товые сланцы // Изв. АН ЭССР. Хим., 1982, 31, № 1, 17—24.
 Уров К., Клесмент И., Эйзен О. Изучение химического состава смолы скоростного полукоксования кукерсита // Изв. АН ЭССР. Хим., 1974, 23, № 2, 99—104.
 Клесмент И. Р., Наппа Л. А., Винк Н. П. Результаты низкотемпературной гидроге.
- низации концентрата керогена эстонского горючего сланца кукерсита // Хим. тв. топл., 1979, № 5, 33—39. 7. Наппа Л., Клесмент И., Винк Н. Влияние разных факторов на низкотемпературное
- ожижение органического вещества горючего сланца-кукерсита // Изв. АН ЭССР. Хим., 1986, **35**, № 2, 83—91. 8. Луйк Х., Клесмент И. Ожижение концентрата кукерсита при 330—370 °С в перегре-
- тых растворителях // Изв. АН ЭССР. Хим., 1985, 34, № 4, 253—263. 9. Изместьев Ю. В., Якимова Е. Е., Луйк Х. Э. Экстракция в сверхкритических условиях керогена кукерсита и диктионемового сланцев с некоторыми растворителями // Тез. докл. IV научно-техн. конф. «Исследование углей, процессов и про-дуктов их переработки». Свердловск, 1986, 55.
- 10. Луйк Х., Клесмент И. Газовая экстракция сапропелитов при 350 °С. Действие спир-
- 10. Ларина Н. К., Скрипченко Г. Б., Абовян А. О. Характеристика дистиллятных фракций гидрогенизата ирша-бородинского угля по данным ИК-спектроскопии // Переработка угля в жидкое и газообразное топливо. М., 1982, 23—31.
- 12. Луйк Х., Клесмент И. Исследование горючих сланцев Джамского месторождения Узбекской ССР. 1. Ожижение в присутствии химически активных вещесть // Горючие сланцы (в печати).

Институт химии Академии наук Эстонской ССР Поступила в редакцию 11/VII 1988

H. LUIK, Lilja LAHE, I. KLESMENT

KUKERSIIDI KONTSENTRAADI VEDELDAMINE AUTOKLAAVIS HCOONa, (NH₄)₂CO₃ JA (NH₂)₂CO MANULUSEL

On näidatud, et termiliselt labiilsed keemilised reagendid HCOONa, (NH4)2CO3 ja (NH2)2CO on tahkete kütuste vedeldamisel kasutatavad keemiliselt modifitseeritud vedelprodukti saamiseks. Formiaadi lagunemisel tekkinud vesinikuga hüdrogeenimisel saadud produkti iseloomustab suur heteroelementide sisaldus, mis katalüütilisel hüdrogeenimisel elimineeritakse. Kasutatud lämmastikuühendite manulusel toimub intensiivne lämmastiku inkorporeerumine ekstrakti, milles ammonolüüsi tulemusel moodustusid alifaatsed amiinid.

H. LUIK, Lilja LAHE, I. KLESMENT

LIQUEFACTION OF THE KUKERSITE CONCENTRATE IN AN AUTOCLAVE IN THE PRESENCE OF HCOONA, (NH4)2CO3 AND (NH2)2CO

It has been shown that at the liquefaction of solid fuels thermally nonstabile compounds HCOONa, $(NH_4)_2CO_3$ and $(NH_2)_2CO$ are usable to produce the chemically modified liquid product. The latter produced by hydrogenation with hydrogen from decomposition of formate is characterized with high content of heteroelements eliminated by the second s by using catalytic hydrogenisation. The presence of nitrogen compounds results in a significant increase in the nitrogen content of extract, as a result of ammonolysis aliphatic ammines were formed.