EESTI NŠV TEADUSTE AKADEEMIA TOIMETISED. KEEMIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ХИМИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. CHEMISTRY

1989, 38, 2

УДК 661.632.12.092(474)

Е. КУДРЯВЦЕВА, Э. ААСАМЯЭ, М. ВЕЙДЕРМА

КИНЕТИКА РАЗЛОЖЕНИЯ ПРИБАЛТИЙСКИХ ФОСФОРИТОВ ПРИ РАЗЛИЧНЫХ ВАРИАНТАХ АЗОТНОКИСЛОТНОЙ ПЕРЕРАБОТКИ

В настоящее время в СССР для производства нитрофоски используют апатитовые концентраты [^{1, 2}]. Однако запасы апатитов ограничены. В связи с этим возрастает интерес к фосфоритам как к сырью для азотнокислотной переработки на сложные удобрения.

В настоящей работе представлены результаты изучения кинетики разложения прибалтийских фосфоритов, предпринятого с тем, чтобы пополнить немногочисленные данные о скорости процесса [^{3, 4}]. Исследовали три типа фосфоритных флотоконцентратов [⁵], характерных для Кингисеппского месторождения: чистый (Ч), ферроидный (Ф) и магнезиальный (М) (табл. 1). Содержание P₂O₅ в них составляло 28,5—31,8%. Образец 1 имел повышенное содержание магния, образец 2 — непиритного железа. Реагентами служили: 1) HNO₃ и 2) HNO₃+H₂SO₄.* Использовали общепринятые методики анализов [^{6, 7}].

Методика экспериментов

Разложение фосфорита (образцы 1—3, табл. 1) азотной кислотой 20—40%-ной концентрации осуществляли в стеклянном реакторе, снабженном лопастной мешалкой (окружная скорость 2,1 м/с). Фосфорит дозировали в подогретую кислоту на протяжении 1—30 с. В некоторых опытах добавляли пеногаситель — 5%-ный водный раствор сукцинола.

Таблица 1

and the second s			The second s		
Показатель	Номер образца				
	1	2	3		
Тип фосфорита	М	Ф	Ч		
Содержание, % Р ₂ О ₅ нерастворимый остаток	28,5 9,3	30,8 9,3	31,8 6,5		
OTHOMEHUE, % CaO: P_2O_5 MgO: P_2O_5 Fe $_2O_2$: P_2O_5	155 11,0	148 3,3	152 3,1		
по пиритному железу по непиритному железу	$0,2 \\ 1,2$	0,3 6,8	0,6 3,5		
Содержание фракции +0,18 мм, %	25,6	43,9	42,2		

Состав исходных проб фосфоритного концентрата

В экспериментах принимала участие В. Саар.

1 ENSV TA Toimetised. K 2 1989

Реакционную смесь перемешивали в течение заданного времени (0,25— 60 мин) при постоянной температуре (30—70°С). Пробы пульпы охлаждали разбавлением их водой. От полученной суспензии отделяли твердую фазу фильтрованием и сушили ее при 70°С. Определяли содержание пентоксида фосфора [⁶] в фильтрате и в твердой фазе и рассчитывали коэффициент разложения фосфорита (*K*_p).

Азотно-сернокислотное разложение фосфорита чистого типа (образец 3, табл. 1) осуществляли по двум вариантам подачи кислот: в смеси и последовательно. Количество азотной и серной кислот составляло 70 и 40% от стехиометрической нормы, концентрация — 40 и 94% соответственно. Фосфоритный концентрат подавали в реактор в течение 0,5— 1 мин. При последовательной подаче кислот в первые 15 мин фосфорит разлагали азотной кислотой, затем на протяжении 5 мин добавляли серную кислоту и продолжали перемешивание еще 40 мин. Суммарная продолжительность разложения фосфорита в обоих случаях составляла 60 мин, температура пульпы 60°С. Аппаратура и методика экспериментов аналогичны примененным при азотнокислотном разложении. Во всех опытах использовали вышеуказанный пеногаситель.

Расхождение в результатах параллельных опытов не превышало ±2% отн.

Результаты экспериментов

Эксперименты по азотнокислотному разложению кингисеппского фосфорита магнезиального типа (образец 1, табл. 1) показывают (табл. 2), что важнейшим фактором, определяющим полноту разложения фосфорита, является норма HNO₃. С повышением ее от 40 до 80% (рис. 1, кривая 1) K_p возрастает практически прямолинейно, превышая норму кислоты на 6—10%. Это объясняется частичным разложением фосфорита образовавшейся в пульпе фосфорной кислотой. При использовании стехиометрической нормы HNO₃ (опыт 8) было достигнуто разложение фосфорита на 95% по истечении 5 мин. Максимальная величина K_p при повышенной норме HNO₃ (опыт 9) близка к 97%. С увеличением продолжительности перемешивания от 5 до 30 мин, а также с изменением концентрации HNO₃ в пределах 20—40% K_p изменяется незначительно.

Таблица 2

Показатель	Номер опыта								
	1	2	3	4	5	6	7	8	9
metuse address: 860 tot Tolifen, 1	Estonia	pst. 12h	cl. 203-7	12.			671	nochopa	Tim d
Норма HNO3, %	40	40	60	60	60	80	80	100	120
Концентрация HNO ₃ , %	40	40	40	30	20	40	40	40	40
Время разложения, мин	5	30	5	5	5	5	30	5	5
Коэффициент разложе- ния фосфорита, %	46,3	45,3	69,0	68,1	68,9	87,5	88,6	95,1	96,8

Разложение кингисеппского фосфорита с применением HNO3 при 50 °С

Результаты опытов с ферроидным фосфоритом (табл. 3, опыты 1—3) показывают, что при 50—70 °С разложение его стехиометрическим количеством HNO₃ практически заканчивалось за 15 с. При 30 °С процесс протекал медленнее — после 5 мин K_p составлял приблизительно 96% с тен-

Рис. 1. Зависимость коэффициента разложения (K_p) фосфоритов от нормы HNO_3 при 5-минутном разложении (1) и от времени перемешивания пульпы при норме 100 (2) и 110% (3). Температура пульпы 30 (2, 3) и 50 °C (1). Номера кривых соответствуют номерам образцов фосфорита по табл. 1.

Рис. 2. Зависимость коэффициента разложения (K_p) от времени при переработке фосфорита чистого типа HNO_3 и H_2SO_4 , поданных последовательно (1) и в смеси (2). Температура пульпы 60 °C.

денцией дальнейшего повышения (рис. 1, кривая 2). Максимальный К_р был достигнут при 50 °С — 99,9%. Меньшее значение этого показателя при 70 °С свидетельствует об осаждении железофосфатов в реакционной пульпе из пересыщенного раствора [⁸].

Таблица 3

Показатель	Номер опыта						
		2	3	4	5	6*	7**
Номер образца фосфорита	2	2	2	3	3	3	3
Норма, % от стех.		-					
HNO ₃	100	100	100	110	110	70	70
H ₂ SO ₄	0	0	0	0	0	40	40
Температура, °С	30	50	70	30	60	60	60
Продолжительность разложения, мин		Ko	эффици	ент ра	зложен	ня	
0.25	77.8	97.9	95.2				
сфатного сырья в сложные удобрерия	81.7	98.5	94.1		NT	Miner of	
2	92.5	97.6	95.0	98.0	98.6	79.7	78.2
эд 5 ж. мынакадоним он жиложедно йн.	95.9	99.9	95.4	98.7	99.3	84.3	92.7
15		-		98.8	99.2	84.4	98.2
30 COLONNORTOCI DIMERCIANON COLONNOR	udpenau	n -	16 -000.01	98.8	99,2	99.3	99,3
60 GT BE REAL BRANK OF STATES		004-0	not the	98.8	99,2	99.7	99,7
Расхол сукцинола					-8 .011	1	
на 1000 г фоссырья, г	0	0	0	1,3	1,8	2,0	0,6

Кинетика разложения фосфоритов с применением HNO₃ (опыты 1-5) и HNO₃ + H₂SO₄ (опыты 6 и 7)

* Последовательная подача кислот, ** подача кислот в смеси.

1*

Обработкой экспериментальных данных (табл. 3, опыты 1, 2) по уравнению Ерофеева $K_p = 1 - \exp(-K\tau^n)$ [9] установлены значения констант скорости реакции разложения фосфорита (при 30 °C K = 2,04 мин⁻¹; при 50 °C K = 4,17 мин⁻¹) и температурного коэффициента скорости реакции ($\gamma = 1,35$). Величина энергии активации по уравнению Аррениуса составляет 26,77 кДж/моль. Реакция протекает в основном в диффузионной области.

При повышенной норме HNO₃ (110%) (табл. 3, опыты 4, 5) фосфорит чистого типа разлагался полнее и быстрее — на 98% в течение 2 мин даже при низкой температуре (30°С). Дальнейшее перемешивание в течение 1 ч (рис. 1, кривая 3) и повышение температуры пульпы от 30 до 60°С оказались малоэффективными — K_p возрастал всего лишь на 0,8— 1,2%.

В опытах 1—3 (табл. 3) пеногаситель не добавляли, пеновыделение было значительным (до 300 мл на 10 г фосфорита). Опыты 4 и 5 показали, что для подавления пены требуется 1—2 г сукцинола (в пересчете на 100%-ное вещество) на 1000 г фосфорита.

Эксперименты по переработке фосфорита с применением HNO₃ и H₂SO₄ показали (табл. 3, опыты 6, 7), что в начальной стадии процесса (первые 2 мин) скорость разложения фосфорита азотной кислотой и смесью кислот приблизительно одинакова, Кр достигает 78-80%. Однако дальнейшее протекание процесса различается: в первом случае (при норме HNO₃, равной 70%) после 5-минутного перемешивания пульпы К_р остается на уровне 84% (рис. 2, кривая 1), а во втором случае (общая норма 110%) разложение фосфорита продолжается и К_р достигает по истечении 15 мин 98% (кривая 2). С введением H₂SO₄ в азотнокислотную пульпу также происходит доразложение фосфорита за тот же период времени (кривая 1). Таким образом, существенной разницы, с точки зрения полноты разложения фосфорита, между двумя вариантами подачи кислот не обнаружено: высокая степень разложения достигается в течение 15-20-минутного перемешивания реакционной смеси. Однако пеновыделение и расход пеногасителя были меньше при использовании смеси кислот.

Из опытов следует, что при одинаковой норме кислоты по H⁺-иону разложение фосфорита смесью HNO₃+H₂SO₄ происходит медленнее, чем одной HNO₃ (табл. 3, опыты 5, 7). Это объясняется тормозящим влиянием пленок сульфата кальция, образующихся на частицах фосфорита.

Таким образом, разложение оболовых фосфоритов азотной кислотой или ею же в смеси с серной протекает с большей скоростью, чем, к примеру, фосфоритов Каратау [¹⁰]. Быстрое и полное разложение прибалтийских фосконцентратов позволяет считать их перспективным сырьем для азотнокислотной переработки на удобрения.

ЛИТЕРАТУРА

- Методы азотнокислотной переработки фосфатного сырья в сложные удобрения. М., 1977.
- 2. Соколовский А. А., Унанянц Т. П. Краткий справочник по минеральным удобрениям. М., 1977.
- Аасамяэ Э. Э., Вейдерма М. А., Кудрявцева Е. Н. Исследование азотнокислотного разложения тоолсеского фосфорита // Тр. Таллин. политехн. ин-та, 1980, № 479, 3—11.
 Орехов И. И., Смородинов А. В. Исследование условий разложения фосфорита
 - Орехов И. И., Смородинов А. В. Исследование условий разложения фосфорита Кингисеппского месторождения азотной кислотой // Изв. ВУЗов. Химия и хим. технол., 1971, 14, № 8, 1246—1247.
 - технол., 1971, 14, № 8, 1246—1247. 5. Аасамяэ Э., Вейдерма М. Оценка эстонских фосфоритных концентратов как сырья для кислотной переработки // Изв. АН ЭССР. Хим., 1983, 32, № 4, 242—245.

- 6. Пылдме М. Э., Пылдме Ю. Х., Борисова Г. С. Определение фосфата усовершенствованным методом дифференциальной фотоколориметрии // Тр. Таллин. политехн. ин-та, 1976, № 397, 59-64.
- 7. Методы анализа фосфатного сырья, фосфорных и комплексных удобрений, кормовых фосфатов. М., 1975. 8. Чепелевецкий М. Л., Бруцкус Е. Б. Суперфосфат. Физико-химические основы про-
- изводства. М., 1958.
- Позин М. Е., Зинюк Р. Ф. Физико-химические основы неорганической технологии. Л., 1985.
- Ким Лин Зу. Разложение химически обогащенного фосфорита Каратау азотной кислотой и смесью азотной и серной кислот // Тез. докл. IX Всесоюз. науч.техн. конф. по технологии неорганических веществ и минеральных удобрений, ч. 1. Пермь, 1974, 62—63.

Таллинский политехнический инститит

Поступила в редакцию 7/XII 1988

J. KUDRJAVTSEVA, E. AASAMÄE, M. VEIDERMA

BALTIKUMI FOSFORIITIDE LAGUNEMISKINEETIKA LÄMMASTIKHAPPEGA **TÖÖTLEMISE ERINEVATE VARIANTIDE PUHUL**

On uuritud puhta, ferroidse ja magnesiaalse fosforiidi flotatsioonkontsentraatide lagunemiskineetikat lämmastikhappega ja lämmastik-väävelhappega töötlemisel ning kindlaks tehtud, et fosforiidi reageerimine lämmastikkappega lõpeb 1–5 minuti jooksul ja lagune-misastme määrab HNO₃ norm. On näidatud, et sulfaatiooni lisamine lämmastikkappele H₂SO₄ kujul aeglustab fosforiidi lagunemist ja selgitatud fosforiidi töötlemise võimalus nii hapete segu kasutamisega kui ka hapete järjestikuse lisamisega.

Ye. KUDRYAVTSEVA, E. AASAMÄE, M. VEIDERMA

RATE OF DECOMPOSITION OF BALTIC PHOSPHORITES IN DIFFERENT VARIANTS OF TREATING THEM WITH NITRIC ACID

Rate of decomposition of pure, ferroidic (nonpyritic) and magnesium-containing flotation concentrates of phosphorite using nitric acid or nitric and sulphuric acids has been studied. It has been established that the reaction of phosphorite with nitric acid finishes in the course of 1 to 5 minutes and the decomposition degree depends on the HNO_3 : phosphorite ratio. It has been shown that by adding sulphate-ion as H_2SO_4 to nitric acid the rate of decomposition of phosphorite diminishes. Possibility of treating phosphorite with the mixture of acids or adding them in succession has been shown.