https://doi.org/10.3176/chem.1989.2.14

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, KEEMIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ХИМИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. CHEMISTRY

1989, 38, 2

УДК 621.794.62

Кайа ТЫНСУААДУ, М. ВЕЙДЕРМА, Рутт ТАККИН, Каталин НЕМЕШ

КОМПЛЕКСНЫЙ АНАЛИЗ ФОСФАТНЫХ ПОКРЫТИЙ И ШЛАМОВ

Kaia TONSUAADU, M. VEIDERMA, Rutt TAKKIN, Katalin NEMES. FOSFAATKATETE JA -SLAM-MIDE KOMPLEKSANALUUS

Kaia TYNSUAADU, M. VEIDERMA, Rutt TAKKIN, Katalin NEMES. COMPLEX ANALYSIS OF PHOSPHATE COATINGS AND SLUDGES

Для защиты металлов от коррозии широко применяется фосфатирование [¹], при этом фосфатный слой обычно наносится на металл под лакокрасочное покрытие. Защитный слой образуется на поверхности металла при контакте с раствором, в котором содержится фосфорная кислота, ионы металлов (Zn^{2+} , Mn^{2+} , Fe^{2+} и др.) и окислителей (NO^{-}_{3} , NO^{-}_{2} , ClO^{-}_{3} или H_2O_2). Образование труднорастворимых фосфатов на поверхности металла является процессом электрохимическим: металл реагирует со свободной фосфорной кислотой, выделяется водород, а однозамещенные фосфаты переходят в более основные, обычно в трехзамещенные, химически связанные с металлом. При этом возможно образование двойных фосфатов. Часть фосфатов осаждается из раствора в виде шлама.

Противокоррозионные и адгезионные свойства фосфатного покрытия во многом определяются его химическим составом, зависящим от условий фосфатирования (состава раствора, температуры, времени, подготовки поверхности металла и др.) [²].

Для изучения химизма фосфатирования в целях совершенствования процесса необходимо определение состава покрытия, а также образующихся шламов.

В данной работе объектами исследования служили фосфатные покрытия на стали (M2 X) и высушенные шламы. Фосфатирование стали осуществляли по методике [³] погружением образцов в растворы фосфатов цинка и марганца, условия процесса приведены в табл. 1.

Для селективного растворения покрытия разработана методика, по которой образцы обрабатывали 0,2 М раствором NaOH, содержащим 2% динатриевой соли этилендиаминтетрауксусной кислоты и 2% тартрата калия-натрия (pH 13), при 80 °C в течение 30 мин. Шламы растворяли в растворе HCl (1:1). Содержание Zn, Mn и Fe в растворе определяли атомно-абсорбционным методом на приборе SP-9-700 фирмы «Руе Uniсат» (Великобритания), содержание фосфора — фотоколориметрически по желтому фосфорномолибденовому комплексу. Точность определения в пределах 3% отн.

ИК-спектры поглощения снимали на приборе «Specord 75 IR» (ГДР) в интервале частот 400—2000 см⁻¹. Образцы готовили в виде таблеток, спрессованных из смеси покрытия, соскобленного с поверхности металла, и KBr.

Рентгенограммы фосфатированной поверхности снимали на приборе «Дрон-0,5» с железным катодом (при 25—27 кВ, 7—12 мА). Для микроскопических исследований покрытий использовали электронный микроскоп «Tesla BS-300» (ЧССР).*

^{*} Рентгенограммы сняты К. Утсалом; микроснимки сняты в лаборатории электронной микроскопии ТПИ У. Каллавус.

Химический состав фосфатных покрытий и шламов при различных условиях фосфатирования

Показатель	Zn—NO ⁻ 2, 45 °С, 5 мин		Zn—ClO- ₃ , 70 °С, 5 мин		Zn, 25 °C, 15 мин		Мп, 72 °С, 10 мин	
	покрытие	шлам	покрытие	шлам	покрытие	шлам	покрытие	шлам
Содержание, %	a. o. Asy	mmetric	oxidation	of 1.3	-ditticianes	A lan	de to the	optical
$\begin{array}{c} P_2O_5\\ FeO\\ MeO\\ H_2O \end{array}$	31,4 17,5 37,3	38,4 22,2 23,3 16,4	33,5 21,2 34,8 —	37,1 32,9 7,4 22,5	31,9 22,4 37,5 —	26,5 27,6 6,6	39,7 16,8 32,2 —	38,2 17,9 30,7 14,9
Молярное соотношение								
Fe:металл (FeO+ме- таллоксил):	0,53	1,07	0,61	5,02	0,67	4,71	0,51	0,57
$: P_2O_5$	3,18	2,20	3,08	2,10	3,44	2,49	2,46	2,53
Масса покры- тия, г/см ²	8,04	inpacti	7,07	0.0 <u>0.00</u> 00	3,25	eH_un	16,51	NO.

На микроснимках поверхности металла (рис. 1) видна дендритовая структура кристаллов цинкфосфатного покрытия. Размеры фибрилл, образующих сферолиты, в среднем составляют 1—40 мкм. Покрытия, полученные в растворе с окислителями, по структуре более однородны, чем полученные без окислителя (рис. 1, а, б, в). В последнем случае видны центры роста кристаллов. Марганецфосфатный слой состоит из несимметричных гексагональных кристаллов размерами 3—8 мкм (рис. 1, г).

Результаты химического анализа приведены в табл. 1. Молярное соотношение Fe : Zn в цинкфосфатных покрытиях было 0,53—0,67, в шламах 1—5, т. е. в 10 раз больше. Таким образом, покрытие состоит из фосфатов цинка и железа, а шлам представлен в основном фосфатами железа. В марганецфосфатном покрытии и шламе фосфатирования соотношение Fe : Мn составляло 0,51 и 0,57 соответственно. Химический состав их близок к составу гераулита — (Mn, Fe)₅H₂(PO₄)₄·4H₂O.

Молярное соотношение (FeO+ZnO) : P_2O_5 в цинкфосфатных покрытиях было более 3, а в шламах от 2,2 до 2,5. Из этого можно заключить, что в состав покрытия входят трехзамещенные фосфаты и избыток железа, а в шламах содержатся гидрофосфаты. Соотношение (FeO++MnO) : P_2O_5 в марганецфосфатном покрытии 2,46, в шламе 2,53. В гераулите это соотношение равно 2,5.

ИК-спектры образцов также указывают на образование монофосфатов на поверхности металла (рис. 2). Интенсивные полосы поглощения при 570, 630, 950, 1010—1030, 1110 см⁻¹ свидетельствуют о наличии в цинкфосфатном покрытии гопеита $(Zn_3(PO_4)_2 \cdot 4H_2O)$ [4], а дополнительные полосы при 990 и 1420—1440 см⁻¹ — о содержании также других фосфатов. В спектрах шламов видны, кроме колебаний PO³⁻⁴, колебания P—OH-связей при 800—900 см⁻¹ [4], что указывает на образование гидрофосфата. Марганецфосфатное покрытие и шлам, несмотря на близость химического состава, имеют, по данным ИК-спектров, разное строение.

На рентгенограммах цинкфосфатных покрытий (табл. 2) превалируют рефлексы гопеита (d=9,04, 4,57 Å) [⁵], но имеются и рефлексы (d=4,47, 2,83, 1,89 Å), свидетельствующие о содержании двойного фос-

Рис. 1. Микроснимки фосфатных покрытий: а — цинкфосфатирование, × 530; б — цинкфосфатирование с NO⁻2, × 530; в — цинкфосфатирование с CIO⁻3, × 530; г — марганецфосфатирование, × 5300.

Zn—NO ⁻ 2 Zn—ClO ⁻ 3			Zn		Шлам—NO-2		
d, Å	I/I ₀ , %	<i>d</i> , Å	I/I0, %	<i>d</i> , Å	I/I ₀ , %	<i>d</i> , Å	I/I ₀ , %
9.00	100	9,01	100	9,04	100	9,09	15
4.58	70	4,56	30	4,57	25	7,86	100
4.47	90	4,47	80	4,45	90	4,55	10
3.39	30	3,40	30	3,40	15	3,92	50
2.83	30	2,84	30	2,83	10	3,21	20
2.612	10	2,618	10			2,942	10
2.228	30	2.224	10	2,228	15	1,955	10
1.899	10	1.896	8	A. LOFF		1,930	10
1,483	25	1,481	10	1,484	10	1,563	10

Рентгенографические данные цинкфосфатных покрытий и шлама

Рис. 2. ИК-спектры поглощения: 1 — цинкфосфатное покрытие (с NO-2), 2 — цинкфосфатное покрытие (без окислителя), 3 — шлам цинкфосфатирования, 4 — марганецфосфатное покрытие, 5 — шлам марганецфосфатирования.

фата типа фосфофиллита — $Zn_2Fe(PO_4)_2 \cdot 4H_2O$. В шламах цинкфосфатирования без окислителя и с ClO_3 содержится в основном аморфная фаза (по данным химического анализа, — гидрофосфаты железа), в шламе из раствора с NO_2 , кроме фосфатов железа, присутствует $Zn_3(PO_4)_2 \cdot 2H_2O$ (d=7,86,3,92,3,21 Å) со следами гопеита.

Марганецфосфатный слой (табл. 3) состоит из гераулита (d=3,15, 2,987 Å). Дифрактограмма шлама марганецфосфатирования соответствует гераулиту с примесью пурпурита — (Fe, Mn) PO₄ [⁵].

Таблица 3

Рентгенографические данные марганецфосфатного покрытия и шлама

Покрытие				Шлам			
<i>d</i> , Å	I/I ₀ , %	d, Å	I/I ₀ , %	<i>d</i> , Å	I/I ₀ , %	<i>d,</i> Å	I/I ₀ , %
8,72	45	100	10,8	8,83	30	3,20	50
8,09	100	3,15	95	8,13	35	3,16	100
6,33	15	3,07	20	6,34	7	3,08	25
5,99	15			6,02	10	3,04	20
		2,987	70	4,97	15	3,00	80
4,71	40	2,873	60	4,72	25	2,886	40
4,53	20			4,55	30	2,803	20
4,37	5	2,625	25	4,39	40	2,634	30
4,04	20	2,561	20	4,06	15	2,562	30
3,64	15	2,427	15	3,65	20	2,437	20
		2,270	10	3,28	30	2,273	15
3,26	40	2,186	20	3,26	30	2,189	35

Таким образом, комплексным исследованием установлено, что цинкфосфатное покрытие при использовании в процессе окислителей состоит в основном из гопеита. При более медленном образовании фосфатного слоя (без окислителя) содержание железа (фосфофиллита) в нем выше. Шламы цинкфосфатирования содержат гидрофосфат железа и Zn₃(PO₄)₂·2H₂O. Марганецфосфатный слой представлен гераулитом, а шлам — гераулитом с примесью пурпурита.

ЛИТЕРАТУРА

- Freeman, D. B. Phosphating and Metal Pretreatment. London, 1986, 225.
 Lorin, G. Phosphating of Metals. Middlesex, 1974, 206.
 Габор Т., Хенчеи П., Немеш К. Комплексное исследование слоев фосфата цинка и марганца // Сб. докл. междунар. симп. «Технологии и сооружения для защиты от коррозии металлическими и неметаллическими покрытиями». Албена, 1986, 341-345.
- Атлас инфракрасных спектров фосфатов. Ортофосфаты. М., 1981.
 Powders Diffraction File. Swarthmore: Joint Committee of Powder Diffraction Standards, 1974. Card No. 1-0964; 10-333; 16-383; 17-474; 17-202.

Таллинский политехнический инститит

Поступила в редакцию 7/XII 1988

Будапештский технический университет