1988, 37, 2

УДК 577. 1

I. JÄRVING, Külliki VARVAS, Aino VAHEMETS, N. SAMEL, Ü. LILLE

A SHORT WAY TO 11-DEHYDRO-TxB₂ AND TxB₂ FROM PGD₂

I. JARVING, Külliki VARVAS, Aino VAHEMETS, N. SAMEL, O. LILLE. 11-DEHÜDRO-TxB₂ JA TxB₂ SAAMINE PGD₂-st

И. ЯРВИНГ, Кюллики ВАРВАС, Айно ВАХЕМЕТС, Н. САМЕЛЬ, Ю. ЛИЛЛЕ. КРАТКИЙ ПУТЬ СИНТЕЗА 11-ДЕГИДРО-ТХВ2 И ТХВ2 ИЗ РGD2

The most common approach in the studies aimed at measuring the thromboxane A_2 production *in vivo* is to monitor the stable hydrolysis product TxB_2 in plasma. However, the measured levels of TxB_2 in plasma vary greatly, even in the studies based on identical assay methods. To circumvent this problem, a prominent TxB_2 metabolite in the circulation as well as urine 11-dehydro- TxB_2 is recommended to use [¹].

In order to synthesize 11-dehydro- TxB_2 we propose the Baeyer-Williger oxidation which converts PGD_2 (1) directly to the corresponding δ -lactone (2). The possible by-products are monoepoxides (4) and (5), diepoxide and lactone epoxides.

The yield of 11-dehydro- TxB_2 using *m*-chloroperbenzoic acid (MCPB) as an oxidant was up to 30%, whereas the content of the open dicarboxylic acid form (3) did not exceed 2%. The total amount of PGD₂ epoxides was 8%. About 60% of the initial PGD₂ remained nonconsumed and was recovered in the course of separation of the reaction mixture by preparative normal-phase HPLC.

Attempts to oxidize PGD_2 with other reagents such as hexafluoroacetone/ H_2O_2 or CH_3COOH/H_2O_2 /alkali were unsuccessful.

The Baeyer-Williger oxidation of PGE_1 and PGE_2 as model compounds led to similar products with the exception of a complete lack of acyclic diacid form of lactones.

The oxidation of PGE_1 (7) with MCPB in dry acetonitrile afforded epoxide (8) in 80% yield. When the reaction was carried out in the acetonitrile-water mixture in the presence of NaHCO₃, the main product was lactone (9), 40%.

The δ -lactones obtained were easily reduced with diisobutylaluminiumhydride (DIBAH) into TxB_2 (6) or its analogs (10) derived from E-type prostaglandins.

The synthesized compounds were identified by ¹³C NMR spectra at the Institute of Chemical Physics and Biophysics by T. Pehk.

REFERENCES

1. Kumlin, M., Granström, M. Radioimmunoassay for 11-dehydro-TxB2. A method for monitoring thromboxane production in vivo. - Prostaglandins, 1986, 32, N 5, 741-767.

стеклянном фильтре большим концестном инстиклированной вольс Лля спреколения обменной сихости НЭАЭ агарому перетак форму сраболяюто ословина из прочост // NAOH промикали ло нехтральной реакция и интродот 00 // ИСНИЮ метилораноку сулствии 0,5 M KCI, КМ-акаром истароля и и 114 фодму 16-15%

изли 0.01 М МаОН ий февородскиейнуу трак и присутствий 0.2 Рецультатасы (ж. обсудление, Паучанио, динамын, рабита

Academy of Sciences of the Estonian SSR, Received Institute of Chemistry Jan. 14, 1988