LÜHITEATEID * КРАТКИЕ СООБЩЕНИЯ SHORT COMMUNICATIONS

https://doi.org/10.3176/chem.1988.2.14

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. КЕЕМIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ХИМИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. CHEMISTRY

1988, 37, 2

УДК 541.123.2 ТАЗЛ ТАЗЛЕЦИААО ВО ТАЗАЦТЕНИА АС

В. ТАЛВЕС, Я. АРРО

ПРЕДЕЛЬНЫЕ КОЭФФИЦИЕНТЫ АКТИВНОСТИ И ИЗБЫТОЧНЫЕ ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ СМЕШЕНИЯ НЕКОТОРЫХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В 1-МЕТИЛНАФТИЛКЕТОНЕ

- V. TALVES, J. ARRO. MONINGATE ORGAANILISTE ÜHENDITE AKTIIVSUSTEGURID LÕPMATUL LAHJENDUSEL JA TERMODÜNAAMILISED LIIGFUNKTSIOONID 1-METÜÜLNAFTÜÜL KETOONIS
- V. TALVES, J. ARRO. ACTIVITY COEFFICIENTS AT INFINITE DILUTION AND EXCESS THERMO-DYNAMIC FUNCTIONS OF SOME ORGANIC COMPOUNDS IN 1-METHYL NAPHTHYL KETONE

(Представил О. Киррет)

В настоящей статье приводятся результаты экспериментального определения коэффициентов активности при бесконечном разбавлении (ү∞) 22 органических соединений в 1-метилнафтилкетоне. Выбор объектов исследования обусловлен необходимостью моделировать системы, встречающиеся в технологии сланцевой смолы и нефти.

Предельные коэффициенты активности определяли методом обращенной ГЖХ. Для измерений использовали методику, изложенную в [1-3]. Измерения проводили на хроматографе «Вырухром» с усовершенствованными системами термостатирования колонки и измерения давления газа-носителя (гелия) на входе в колонку. Неподвижную жидкую фазу (1-метилнафтилкетон ч.) очищали методами вакуумной дистилляции и препаративной газовой хроматографии. После очистки содержание основного вещества составляло 91% (остальная часть — 2-метилнафтилкетон). 1-Метилнафтилкетон наносили на Инертон AW-HMDS 0,16— 0,20 мм в количестве 15%. Измерения проводили в интервале температур 297—341 К, температуру колонки (нержавеющая сталь, 1000×4 мм) поддерживали с точностью ±0,05 К.

Необходимые в расчетах данные о давлении насыщенных паров и энтальпии испарения сорбатов определяли по данным [^{4, 5}], используя уравнение Антуана с тремя константами.

Найдено, что во всех исследованных системах зависимость логарифма абсолютного объема удерживания $(\ln V_g^0)$ от обратной температуры хорошо ($r \ge 0.99$) описывается уравнением прямой

$$\ln V_g^0 = a + b/T.$$

140

(1)

Коэффициенты a и b уравнения (1) и абсолютные удерживаемые объемы при 298 К для систем с 1-метилнафтилкетоном

Номер	Соединение	Число точек	$-a\pm s_a$	$b\pm s_b$	V ⁰ g, м ³ /кг
2 Linter	THE DE DECEMENT	MULTER	UL YEAH	18.0	
1	Гексан	25	$6,15\pm0,11$	3140 ± 35	0,080
2	Гептан Областов Области Области	6	$6,80 \pm 0,26$	3670 ± 83	0,246
3	Октан	13	7,46±0,17	4180 ± 54	0,704
4	1-Гексен	7	$6,24 \pm 0,18$	3250 ± 58	0,106
5	1-Гептен	6	$6,79 \pm 0,25$	3740 ± 83	0,315
6	1-Октен	12	$7,52\pm0,15$	4270 ± 48	0,897
7	Циклогексан	7	$5,77 \pm 0,16$	3300 ± 52	0,200
8	Бензол	6	$6,37 \pm 0,25$	3880±81	0,766
.9	Толуол	10	$7,07 \pm 0,19$	4420 ± 60	2,327
10	Метиловый спирт	8	$8,15\pm0,16$	3970 ± 50	0,175
11	Этиловый спирт	19	$8,55 \pm 0,13$	4280 ± 42	0,331
12	Изопропиловый спирт	12	$8,63 \pm 0,16$	4370 ± 52	0,413
13	Ацетон	7	$6,69 \pm 0,19$	3700 ± 60	0,304
14	Этилацетат	13	$7,48 \pm 0,13$	4150±42	0,624
15	Этиловый эфир	17	$6,40 \pm 0,15$	3210 ± 48	0,079
16	Тетрагидрофуран	6	$6,85 \pm 0,22$	3970±71	0,641
17	Нитрометан	7	$7,14\pm0,15$	4330 ± 49	1,604
18	Метилен хлористый	7	$6,32 \pm 0,20$	3560 ± 64	0,275
19	Хлороформ	16	$6,78\pm0,15$	3970 ± 49	0,688
20	Четыреххлористый				
	углерод	6	$6,28 \pm 0,27$	3690 ± 87	0,443
21	Тиофен	11	$6,79 \pm 0,21$	4130±67	1,164
22	Пиридин	8	$7,02\pm0,19$	4610±61	4,626

Таблица 2

Энтальпия растворения, избыточные термодинамические функции смешения и коэффициенты активности органических соединений при бесконечном разбавлении в 1-метилнафтилкетоне при 298 К

COLOR OF A COMPANY COLOR OF A PARTY AND					
Соединение	ΔH _s	<i>GE</i> кДж/моль	Η̈́E	<i>ŠE,</i> Дж/моль · К	γ∞
Гексан	26.09	5.23	5.89	2.21	8.26
Гептан	30.50	5.42	6.32	3.02	8.90
Октан	34 74	5 75	710	4 53	10.19
1-Гексен	27 01	4 03	412	3.02	5.08
1-Гептен	31.08	4 98	4 73	1.51	5.63
1-Октен	35.48	4 60	5.11	171	641
Циклорексан	27 42	4 05	5.86	6.07	513
Бензол	32.24	0.79	1.81	3.42	1.38
Толуол	36.73	0.40	1 45	3.52	1.18
Метиловый спирт	32,99	3.77	5.78	6.74	4.58
Этиловый спирт	35.57	4.02	6.78	9.26	5.06
Изопропиловый спирт	36.31	4.62	8.52	13.1	6.46
Ацетон	30.75	0.88	0.96	0.27	1.43
Этилацетат	34.49	1.31	1.32	0.03	1.69
Этиловый эфир	26.68	2.18	1.38	-2.68	2,41
Тетрагидрофуран	32,99	-0.10	-0.64	-1.81	0,96
Нитрометан	35,98	1,39	2,54	3,86	1,75
Метилен хлористый	29.58	-0.41	-0.35	0,20	0.85
Хлороформ	32,99	-0.71	-0.68	0,10	0,75
Четыреххлористый углерод	30,66	1,69	1,91	0,74	1,98
Тиофен	34,32	0,19	0,52	1,11	1,08
Пиридин	38,31	0,21	1,10	2,98	1,09

Сравнение коэффициентов активности сорбатов в пропилфенилкетоне и в 1-метилнафтилкетоне (номера соединений соответствуют приведенным в табл. 1).

Значения коэффициентов а и b (табл. 1) использовали для интерполяции величин Vog до 298 К, на основе которых рассчитывали ү∞ в 1-метилнафтилкетоне. сорбатов Отсутствие заметного систематического отклонения экспериментальных величин V от рассчитанных по уравнению (1) указывает на то, что энтальпию растворения сорбатов в жидкой фазе (ΔH_s) можно считать величиной постоянной и температурную зависимость V⁰ можно использовать для расчета парциальных термодинамических величин (табл. 2).

При сопоставлении значений у∞ органических соединений в пропилфенилкетоне [6] с соответствующими значениями у∞ в 1-метилнафтилкетоне выясняется, что между этими величинами существует линейная зависимость (рисунок), за исключением у∞ для алканов, алкенов и циклогексана. Следует отметить, что значения у∞ органических соединений в бензофеноне [1] коррелируют с соответствующими значениями у[∞] в

1-метилнафтилкетоне без отклонения значений у[∞] упомянутых углеводородов от общей зависимости. Следовательно, алкильная цепь в молекуле ароматического кетона способствует растворимости линейных углеводородов и циклогексана, а второе ароматическое кольцо заметно ее тормозит.

ЛИТЕРАТУРА

- 1. Мельдер Л. И., Метлицкая О. Ф. Предельные коэффициенты активности органических соединений в некоторых фенолах, кетонах и эфирах. — Ж. прикл. хим., 1985, 58, № 8, 1928—1930.
- 2. Арро Я. Применение обращенной газовой хроматографии в исследовании тяжелой
- смолы сланца-кукерсита. Изв. АН ЭССР. Хим., 1982, 31, № 3, 163—168. 3. Арро М. А. Избыточные термодинамические функции смешения органических раство-рителей с 3,5-диметоксибензолом. Тр. Таллин. политехн. ин-та, 1981, № 509, 59—66.
- Handbook of Chemistry and Physics. 57th ed. Cleveland (Ohio), 1976–1977.
 Lange's Handbook of Chemistry. 12th ed. New York-St. Louis et al., 1979.
- 6. Арро Я., Викс М., Талвес В. Предельные коэффициенты активности и избыточные термодинамические функции смешения некоторых органических соединений в пропилфенилкетоне. — Изв. АН ЭССР. Хим., 1986, 35, № 3, 226—228.

Инститит химии Академии наук Эстонской ССР Поступила в редакцию 26/X 1987