EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. КЕЕМIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ХИМИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. CHEMISTRY

1988, 37, 2

https://doi.org/10.3176/chem.1988.2.12

УДК 541.12.01703: 662.749.31

Г. ЛЕХОВА, Е. НОВИКОВА, Марина ГРИНЧАК

ЭКСПЕРИМЕНТАЛЬНО-РАСЧЕТНОЕ ИССЛЕДОВАНИЕ ПАРОЖИДКОСТНОГО РАВНОВЕСИЯ В СИСТЕМАХ, ОБРАЗО-ВАННЫХ НАФТАЛИНОМ С ГОМОЛОГАМИ ИНДАНА ПРИ РАЗЛИЧНЫХ ДАВЛЕНИЯХ

(Представил О. Эйзен)

Решение проблемы выделения нафталина методом ректификации из нафталинсодержащих фракций тяжелой смолы пиролиза нефтяного сырья, прошедших гидрогенизационную очистку от ненасыщенных соединений, связано с исследованием диаграмм жидкость—пар в бинарных и многокомпонентных системах, образованных нафталином, инданом и его гомологами при атмосферном и пониженном давлениях.

В настоящей работе экспериментально изучены зависимости температуры кипения от состава бинарной системы индан-нафталин при давлениях 101,3; 26,66; 19,99; 13,33 кПа. Эксперимент проводился атмосферном при (эбуллиометр Уошборна) и пониженном (микроэбуллиометр Михкельсона [1]) давлениях. Подготовка реактивов к эксперименту требованиям, соответствовала предъявляемым к чистоте веществ для эбуллиометрического анализа. Полученные данные приведены в табл. 1 и на рисунке. Зависимости, восстановленные по модели Вильсона, представлены в табл. 2. Можно констатировать, система индан-нафталин что зеотропна, имеет положительное отклонение от закона Рауля, при понижении давления неидеальность в системе незначительно возрастает.

Зависимость температуры кипения от состава системы индан—нафталин при давлениях 101,3 (1), 26,66 (2), 19,99 (3) и 13,33 кПа (4). Точки — эксперимент, кривые — расчет по модели UNIFAC.

Экспериментально	изученные	зависимости температуры кипения	
от состава	бинарной	системы индан-нафталин	

101,3 кПа		26,66	6 кПа	19,99	ЭкПа	13,33 кПа			
содер- жание индана, % моль	темпера- тура, Қ	содер- жание индана, % моль	темпера- тура, К	содер- жание индана, % моль	темпера- тура, К	содер- жание индана, % моль	темпера- тура, К		
$0,0 \\ 7,5 \\ 28,1 \\ 42,4 \\ 69,9 \\ 100,0$	491,16 483,55 474,16 467,75 457,76 450,86	0,0 77,3 100,0	439,44 407,94 404,10	0,0 77,3 100,0	429,88 399,09 395,07	0,0 77,3 100,0	417,20 387,47 383,62		

Сравнение кривых на рисунке полностью (101,3 кПа) и неполностью (26,66; 19,99; 13,33 кПа) исследованных систем свидетельствует о хорошей сопоставимости полученных данных и возможности их использования для предсказания парожидкостного равновесия в системах нафталин—гомологи индана.

Матрица параметров энергетического взаимодействия (ПЭВ) групп CH₂, CH₃, ACH, AC* модели UNIFAC представлена в табл. 3. В качестве базовых при расчете ПЭВ были взяты системы индан—нафталин и *м*-крезол—нафталин [²] при 26,66 кПа. ПЭВ подбирали по методике [³]. Исходные ПЭВ брали из [⁴]. Работоспособность полученных ПЭВ проверяли посредством расчета парожидкостного равновесия системы индан нафталин при различных давлениях. Она показала (рисунок, табл. 2 и 4), что экспериментальные и расчетные данные имеют хорошую сходимость. Поэтому матрица применима для предсказания парожидкостного равновесия в ряду систем нафталин—гомологи индана при атмосферном и пониженном давлениях. В табл. 5 приведены константы уравнения Антуана для гомологов индана, восстановленные по температурам кипения из [⁵–7].

В табл. 4 представлены коэффициенты активности изученных систем, полученные расчетным путем по модели UNIFAC (табл. 3). Неидеальность в системах нафталин—монометилинданы практически идентична (отличие в значениях γ_1^{∞} и γ_2^{∞} — в третьем знаке после запятой). Этот факт означает, что все монометилинданы, имеющие температуру кипения ниже температуры кипения нафталина, в модельных системах для расчета ректификации могут быть представлены одним компонентом с условной температурой кипения, которая выбирается в соответствии с соотношением метилинданов во фракции как аддитивная величина, и содержанием, равным суммарному содержанию монометилинданов. Аналогично, диметилинданы должны быть представлены в виде двух компонентов: 4,6-диметилиндана, температура кипения которого ниже, чем у нафталина, и условного компонента с суммарным содержанием 4,7-, 2,3- и 4,5-диметилинданов и температурой, рассчитанной по температурам кипения этих веществ.

Независимость γ_1^{∞} и γ_2^{∞} (табл. 4) от давления и температуры кипения переменного члена ряда (соответственно моно- или диметилиндана) обуславливает равенство констант уравнения Вильсона для систем нафталин—монометилинданы и нафталин—диметилинданы [8]. Указан-

^{*} ПЭВ для группы АСОН, входящей в молекулу м-крезола, в настоящей работе опу-

124	80 80	температура кипения, К	417,19	402.73	398,58	395,40	392,82	390,65	388,74	387,02	385,42	384,23
1111	$\Lambda_{12} = 0, \ \Lambda_{21} = 0,$	коэф. активности нафталина ү ₂	1,00	1.02	1,04	1,07	1,11	1,16	1,23	1,31	1,41	1.51
0.00	33 кПа	коэф. активности идана у ₁	1,51	1,31	1,23	1,16	1,11	1,07	1,04	1,02	1,00	1,00
10 m	13,	содержание индана в содержание индана в	0,0	50.6	62,0	70,2	76,6	82,0	86,7	91,2	92,6	100,0
	,85 80	температура Кипения, К	429,87	415,55	411,19	407,77	404,97	402,59	400,50	398,61	396,87	395.57
あるの	$\Lambda_{12} = 0$, $\Lambda_{21} = 0$,	коэф. активности нафталина ү ₂	1,00	1.01	1,03	1,06	1,09	1,14	1,20	1,26	1,35	1.44
	9 кПа	коэф. активности иу внядни	1,43	1.26	1,20	1,14	1,10	1,06	1,03	1,01	1,00	1.00
S Port	19,6	содержание индана в паровой фазе, % моль	0,0 30,8	48.8	60,6	69,3	76,0	81,7	86,7	91,2	92,6	100.0
ED H	90 80	вдүтвдэпмэт Х, кинэпих	439,42	425.40	420,89	417,29	414,30	411,74	409,48	407,45	405,57	404.09
	$ 5 \ \kappa \Pi a $ $ \Lambda_{21}^{12} = 0.5 \ \Lambda_{21}^{$	коэф. активности нафталина ү ₂	1,000	1.01	1,03	1,05	1,08	1,12	1,16	1,22	1,29	1.37
20		коэф. активности индана ү ₁	1,35	1.22	1,17	1,12	1,08	1,05	1,03	1,01	1,00	1.00
100	26,6	содержание индана в паровой фазе, % моль	0,0	47.2	59,4	68,4	75,5	81,4	86,5	91,2	96,0	100.0
1 22 23	,85 ,85	-эпия бутра кипе- У , кин	491,15	476.50	471,37	467,24	463,75	460,71	458,00	455,54	453,26	451.33
No. of Concession, No. of Conces	$\begin{array}{c} \Lambda_{12} = 0 \\ \Lambda_{21} = 0 \end{array}$	коэф. активности нафталина γ_2	1,00	1.01	1,02	1,05	1,07	1,11	1,15	1,20	1,25	1.31
1	,3 кПа	коэф. активности индана у ₁	1,31	1.20	1,15	1,11	1,07	1,05	1,03	1,01	1,00	1.00
10 20 10	101	содержание индана в паровой фазе, % моль	0,0	39.9	55,2	64,7	72,4	79,0	84,8	90,1	95,1	100.0
N. N.	(BJ(B)	в жидкой фазе, % моль	0,0	20.0	30,0	40,0	50,0	60,0	70,0	80,0	0'06	0.00

Tabauya 2

Фазовое равновесие жидкость-пар в системе индан-нафталии при разных давлениях

Матрица параметров энергетического взаимодействия а_{тп}, К

Группы	CH ₂	CH ₃	ACH	AC
CH ₂	0,0	141,67	61,40	211,55
CH ₃	185,94	0,0	3,43	13,94
ACH		-173,90	0,0	-439,38
AC		-178,08	-156,98	0,0

Таблица 4

Константы уравнения Вильсона и предельные коэффициенты активности в системах нафталин—гомологи индана

Компонен	ты системы	Λ_{12}	Λ_{12}	Λ_{21}	Давление, кПа									
				101,3		26,66		19,99		13,33		6,66		
1	2	1.00		γ_1^{∞}	γ_2^{∞}	γ_1^∞	γ_2^∞	γ_1^{∞}	γ_2^∞	γ_1^∞	γ_2^{∞}	γ_1^∞	Υ [∞] ₂	
2-Метилин- дан 1-Метилин- дан 5-Метилин- дан 4-Метилин- дан	нафталин	0,54 0,52	1,50[⁸] 1,51	1,14	1,06	1,16	1,06	1,16	1,06	1,17	1,06	1,18	1,06	
4,6-Димети. Нафталин	линдан— нафталин 4,5-диметил- индан 2,3-диметил- индан	1,48 0,68	0,68	0,98 0,89	0,89	0,98 0,87	0,86 0,98	0,98 0,86	0,86 0,98	0,98 0,86	0,85 0,98	0,98 0,84	0,84	
arocarios	4,7-диметил- индан													

Таблица 5

Константы уравнения Антуана $\lg P = A - \frac{B}{C+T}$

(P - MM pt. ct., T - °C)

		Константы						
Соединение	кипения, К	A	В	С				
Нафталин	491,21	7.1268	1828.04	212.53				
Индан	451.26	6.7527	1402.22	183.97				
2-Метилиндан	460.16	7 4551	1764.88	198.81				
1-Метилиндан	462.16	7 4442	1776.18	200.20				
5-Метилиндан	475.16	7 4369	1888 29	212.94				
4-Метилиндан	478.68	1,1000	1926 59	217 17				
4,6-Диметилиндан	485.16	6.8679	1575.12	183 14				
4,5-Диметилиндан	493 16	6 5648	1396.95	159.09				
2,3-Диметилиндан	496.16	6 7666	1535 35	172 03				
4,7-Диметилиндан	501,16	6,1617	1120,89	113,60				

Таблица 6

Азеотропные параметры изученных систем

	Давление, кПа								
	101	,3	26,	66	19,	99	6,66		
Система	содер- жание нафта- лина, % моль	темпе- ратура, К							
Нафталин— 2,3-диметил- индан	1,0	496,5		Зеотро	опна			Конст	
Нафталин— 4,5-диметил- индан	20,0	493,5	16,0	441,9	14,0	432,5	5,0	401,1	

ные системы характеризуются одним набором констант, которые можно достаточно точно (табл. 4) определить по номограммам, приведенным в [8].

В изучаемом ряду систем с повышением температуры кипения гомолога индана происходит переход от систем с положительным отклонением от закона Рауля (диапазон температур 451—478,5 K) к системам со слабым отрицательным отклонением (температуры 485—501 K**).

В системах нафталин—2,3-диметилиндан и нафталин—4,5-диметилиндан обнаружены азеотропы с максимумом температуры кипения. Азеотропная точка при понижении давления сдвигается в сторону уменьшения содержания нафталина (табл. 6). Азеотропная область достаточно узка и составляет не более ±5 К по отношению к температуре кипения нафталина.

Сравнение счета с помощью ПЭВ (табл. 3) в рядах гомологов нафталина и индана с расчетами по другим матрицам, включающим группы CH₂, CH₃, ACH, AC (в печати), позволяет сделать вывод о корректности использования полученных параметров для систем гомологов при атмосферном и пониженном давлениях.

** При более высоких температурах исследования не проводились, но очевидно, что в этом случае значения γ_1^{∞} и γ_2^{∞} будут уменьшаться.

ЛИТЕРАТУРА

- Михкельсон В. Я., Кирсс Х. Х., Тооме М. Ю., Кудрявцева Л. С. Эбуллнометрическая установка для определения температуры кипения жидкостей. — Ж. физ. хим, 1979, 53, № 4, 1046—1048.
- 2. Лехова Г. Б., Кушнер Т. М., Харлампович Г. Д., Серафимов Л. А. Исследование азеотропии в бинарных системах, образованных некоторыми компонентами каменноугольной смолы. Ж. физ. хим., 1971, 45, № 11, 2956.
- Лехова Г. Б. Новые параметры группового взаимодействия для расчетов фазового равновесия жидкость—пар по модели UNIFAC. — Ж. прикл. хим., 1985, 58, № 10, 2381—2384.
- Gmeling, J., Rasmussen, P., Fredenslund, A. Vapor-liquid equilibria by UNIFAC group contribution. 2. Revision and extension. — Ind. Eng. Chem. Proc. Des. Develop., 1982, 21, N 1, 118—127.

- Свойства органических соединений. Справочник под ред. А. А. Потехина. Л., 1984.
 Лин С. Т., Брюле М. Р., Янг Ф. К. Банк данных по синтетическим топливам. Нефть, газ и нефтехимия за рубежом, 1980, № 11, 138—144.
 Anderson, H., Wu, W. R. K. Properties of Compounds in Coal-Carbonization Products. Washington, 1967.
 Minebara K. Sodorne, H. Kitamura, K. Evaluation of the Willow constant.
- 8. Miuahara, K., Sodotomo, H., Kitamura, K. Evaluation of the Wilson parameters by nomographs. - J. Chem. Eng. Jap., 1970, 3, N 2, 157-160.

Уральский политехнический инститит

Поступила в редакцию 23/VI 1987

Институт химии Академии наук Эстонской ССР

G. LEHOVA, J. NOVIKOVA, M. GRINTŠAK

AURU JA VEDELIKU TASAKAALU UURIMINE ERINEVATEL RÕHKUDEL SUSTEEMIDES, MIS SISALDAVAD NAFTALIINI JA INDAANI HOMOLOOGE: **EKSPERIMENT JA ARVUTUS**

Artiklis on esitatud keemistemperatuuri ja koostise eksperimentaalsed sõltuvused binaarses süsteemis indaan—naftaliin rõhkudel 101,3; 26,66; 19,99 ja 13,33 kPa. Auru ja vedeliku olekudiagrammid on arvutatud Wilsoni võrrandi abil.

Ja vedeliku olekudiagrammid on arvutatud wilsoni vorrandi abii. Rühmadele CH₂, CH₃, ACH ja AC on arvutatud energeetiliste vastastikmõjude para-meetrite maatriks, mida kasutatakse auru ja vedeliku tasakaalu ennustamiseks rõhul ≤101,3 kPa süsteemidele, mis sisaldavad naftaliini ja-indaani homolooge. On näidatud, et süsteemid naftaliin—2,3-dimetüülindaan ja naftaliin—4,5-dimetüülindaan on aseotroop-sed (keemistemperatuuri maksimumiga); on arvutatud nende parameetrid.

G. LEKHOVA, E. NOVIKOVA, M. GRINCHAK

CALCULATION OF VAPOR-LIQUID EQUILIBRIA IN SYSTEMS CONTAINING NAPHTALENE AND INDAN HOMOLOGUES AT VARIOUS PRESSURES

The UNIFAC model has been used to predict vapor-liquid equilibria in systems containing naphtalene and indan homologues. It has been shown that the group para-meter matrix calculated can be applied to these systems at atmospheric and lower pressures.

For all systems azeotropic parameters, Wilson constants and activity coefficients have been predicted. эти уровни следовали друг за другие на провис насто видовани следовани други за други насто насто насто насто н