1987, 36, 2

УДК 547.313.4+541.62

А. МЕТСАЛА, В. ЛОБАНОВ, Сильвия РАНГ, О. ЭЙЗЕН

ТЕОРЕТИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ МАСС-СПЕКТРОВ ЭЛЕКТРОННОГО УДАРА ИЗОМЕРОВ 2-БУТЕНА

С помощью масс-спектрометрии электронного удара (ЭУ) нельзя осуществить идентификацию *цис-* и *транс-*изомеров 2-бутена [^{1–5}], так как спектры этих веществ практически идентичны. Однако полевые массспектры некоторых производных *цис-* и *транс-*изомеров 2-бутена в некоторой степени **р**азличаются [⁶].

Такой характер фрагментации молекулярных ионов геометрических изомеров 2-бутена может быть обусловлен следующими причинами:

1. Энергетический барьер изомеризации может меняться при переходе от молекулы к соответствующим молекулярным ионам.

2. У молекулярных катион-радикалов бутена может и не быть устойчивых конфигураций, отвечающих цис- и транс-изомерам.

3. Основной вклад в фрагментацию молекулярных ионов при ЭУ могут вносить распады из возбужденных электронных состояний. При полевой ионизации образование электронно-возбужденных молекулярных ионов маловероятно [7].

4. Сходство масс-спектров ЭУ может быть обусловлено тождественностью электронной структуры изомеров.

В целях проверки этих предположений и выяснения роли геометрической изомеризации в процессах фрагментации проведены квантовохимические расчеты пространственного и электронного строения *цис-* и *транс*изомеров молекулы и молекулярного иона 2-бутена, а также некоторых осколков, образующихся при распадах из ионизированных состояний.

Все расчеты выполнены методом ССП-ЛКАО-МО в валентном приближении МЧПДП/3 (MINDO/3) [⁸]. Поиск равновесных конфигураций исследуемых молекулярных систем был осуществлен градиентным методом VA10A на гиперповерхности потенциальной энергии [⁹]. Нами получены равновесные длины связей, валентные и двугранные (σ) углы исследованных молекул и соответствующих молекулярных ионов.

Установлено, что ионизация практически одинаково изменяет соответствующие длины связей и валентные углы рассматриваемых изомеров (табл. 1). Так, центральная углерод-углеродная связь удлиняется от 1,34 до 1,40 Å, что превышает типичные значения для полуторных связей. При этом нарушается копланарность углеродного остова молекулярного иона, и плоская *транс*-конформация уже перестает отвечать минимальной энергии. Расчет показывает (рис. 1), что наиболее стабильной будет конформация молекулярного иона с почти *транс*-ориентацией концевых метильных групп ($\sigma = 147,5^\circ$). Для второй устойчивой конфигурации $\sigma = 33,5^\circ$.

Потенциальные кривые внутреннего вращения вокруг центральной углерод-углеродной связи (рис. 2, 3) показывают, что при о (C1C2C3C4) = = 90°, отвечающем переходному состоянию *цис-транс*-изомеризации 2-бутена, теплота образования при ионизации уменьшается от 275,3 (экспериментальное значение 262,7 кДж/моль [¹¹]) до 56,4 кДж/моль. При построении потенциальных кривых предполагалось, что сумма валентных

Равновесное пространственное строение геометрических изомеров молекулы и устойчивых конфигураций молекулярного иона 2-бутена, точечные группы симметрии и теплоты образования

* В скобках указаны экспериментальные величины [10].

углов между связями для каждого из атомов C1 и C2 в процессе вращения остается постоянной и равной 360°.

Ионизация приводит и к уменьшению теплоты *цис-транс*-изомеризации с 3,88 для молекулы до 2,06 кДж/моль для молекулярного иона 2-бутена (рис. 3). Согласно экспериментальным оценкам, теплота такого перехода для молекулы 2-бутена составляет 4,5 кДж/моль [¹¹].

Однако точно определить конфигурацию переходного состояния *цистранс*-изомеризации молекулы 2-бутена нам не удалось из-за трудности корректного учета конфигурационного взаимодействия, играющего важную роль в данном процессе. Для молекулярного иона 2-бутена невозможность локализации седловой точки *цис-транс*-превращения обусловлена тем, что молекулярные орбитали цис-изомера в основном состоянии коррелируют с молекулярными орбиталями *транс*-изомера в возбужденном электронном состоянии [¹²].

Отметим, что переход между электронными состояниями различной симметрии происходит лишь при наличии электронно-колебательного или спин-орбитального взаимодействия.

Используя значения теплот образования некоторых нейтральных и заряженных фрагментов (табл. 2), которые могут образовываться при распаде исходных молекулярных ионов, мы провели расчет энергии свя-

Рис. 1. Равновесное пространственное строение и нумерация атомов молекулярного иона *транс-2-бутена.*

Рис. 2. Потенциальные кривые цис-транс-изомеризации молекулы 2-бутена.

15 4 - Sold

зей в молекуле и в катион-радикале 2-бутена (табл. 3). Видно, что расчет в приближении МЧПДП/3 в основном правильно воспроизводит энергии диссоциации связей в молекуле. Максимальное отклонение наблюдается для двойной связи, которое заключено в интервале от 50,0 до 166,1 кДж/моль. Однако, следует отметить, экспериментальные данные об энергии этой связи весьма противоречивы и неоднозначны. В рассматриваемой молекуле энергии диссоциации связей увеличиваются в следующей последовательности:

$$D(C1 = C2) \gg D(C2 - H) \sim D(C2 - C3) \gg D(-CH_2 - H).$$

В молекулярном ионе последовательность несколько иная:

 $D(C1-C2) \gg D(C2-C3) \gg D(-CH_2-H) \gg D(C2-H).$

Рис. 4. Сечение поверхности потенциальной энергии вдоль координаты реакции перегруппировки водородного атома в молекулярном ионе *цис*-2-бутена.

Таблица 2

Теплоты образования нейтральных и заряженных осколков, образующихся при всевозможных распадах молекулярного иона 2-бутена, кДж/моль

CHRIC-OMMUTATION	<i>м/е</i> для иона	Заряд			
Осколок		0	a holes 1 area opp		
H. (11-8H)	2-C3)1>D(C	217,99	1423,7		
CH ₃ HC—CH ₃	15	177,23	1089,01		
HC-CH-CH ₃	41	180,43	914,27		
CH2-CH-CH-CH3	Q < (155-11)-	70,67	834,8		
CH ₃ -CH-C-CH ₃	55	143,3	799,3		
C_2H_5	29	93,63	860,77		
C_2H_3	27	280,49	1038,88		
C_2H_4	28	80,420	1018,51		

В наибольшей степени при ионизации уменьшается энергия двойной связи, которая тем не менее остается самой прочной в молекулярном ионе. Самыми слабыми в молекулярном катион-радикале оказываются углерод-водородные связи, что коррелирует с относительно высокой интенсивностью линий ионов типа [M-1]⁺ в масс-спектре ЭУ 2-бутена [¹⁶].

Хотя, согласно расчетам, углерод-углеродные связи в молекулярном ионе несколько прочнее углерод-водородных, наиболее интенсивный пик в спектре отвечает отрыву метильного радикала с локализацией положительного заряда на осколке $[C_3H_5]^+$ (m/e=41). Такое несоответствие с экспериментальными данными можно объяснить тем, что в образовавшемся молекулярном ионе энергия возбуждения локализуется в основном на связях C2—C3 и C1—C4.

В масс-спектрах ЭУ изомеров 2-бутена есть три относительно интенсивные линии с m/e=27, 28, 29, отвечающие ионам, образующимся как при простом разрыве центральной углерод-углеродной связи, так и при ее диссоциации с переносом водорода на один из осколков. При простом разрыве этой связи образуются заряженный и нейтральный фрагменты. Брутто-формула каждого из них может быть представлена в виде C_2H_4 . Расчет показывает (табл. 2), что сумма энергий продуктов такого распада будет минимальной в том случае, когда оба изомера имеют конфигурацию этилена (причем структура заряженного фрагмента скрученная). Энергия диссоциации центральной углерод-углеродной связи при этом равна 284,5 кДж/моль. Несмотря на то, что рассматриваемый процесс определен как простой разрыв связи, он все же сопровождается миг-

Таблица 3

Энергии	связей в	молеку	ле и	молекулярном	ионе
	2-6	утенов,	кДж	/моль	

Связь –		Молекула	цис-Ион	<i>транс-</i> Ион расчет	
	расчет	эксперимент [13-15]	расчет		
C2—C3 C1—C2 C4—H10 C2—H5 C1—C2*	386,3 661,3 317,3 389,9 189,5	384,5—411 711,3—828,4 326,8—351,8 401,7—451,9	254,2 585,9 235,8 199,2 282,5	256,2 588,5 238,4 203,1 284,5	

* В случае перегруппировки водородного атома.

рацией водорода, протекающей в пределах нейтрального и заряженного фрагментов, что не отражается на характере конечного масс-спектра.

Для объяснения образования ионов с *м/е*=27 и 29 следует предположить, что перед диссоциацией центральной углерод-углеродной связи происходит перенос водорода, например от атома С1 к атому С2 или наоборот. Из рис. 4, на котором изображена зависимость теплоты образования молекулярного иона 2-бутена от расстояния R(C2-H6), видно, что энергия активации такой перегруппировки составляет лишь 52,0 кДж/моль, а теплота реакции равна 39,8 кДж/моль. Перегруппированный молекулярный ион в дальнейшем распадается по центральной углерод-углеродной связи по двум каналам:

$$[CH_{3}C-CH_{2}CH_{3}]^{+} \rightarrow CH_{3}CH_{2}^{+}+[C_{2}H_{3}]^{+} 276,3,$$
$$[CH_{3}C-CH_{2}CH_{3}]^{+} \rightarrow [CH_{3}CH_{2}]^{+}+C_{2}H_{2}^{+} 285,0.$$

Из этой схемы видно, что вероятность локализации положительного заряда на каждом из двух возможных осколков практически одинакова (теплоты реакции равны). Эти величины незначительно отличаются от теплот простого разрыва центральной углерод-углеродной СВЯЗИ (284,5 кДж/моль), чем объясняется близкая интенсивность трех соответствующих линий с м/е = 27, 28 и 29 в спектре.

ЛИТЕРАТУРА

- Biemann, K. Mass Spectrometry. New York, 1962.
 Levsen, K., Heimbrecht, J. Isomerisation of hydrocarbon ions. Org. Mass. Spectrom., 1977, 12, N 3, 131—135.
 Nishishita, T., Bockhoff, F. M., McLafferty, F. W. Structures and formation of (C₄H₈)+ ions. Org. Mass. Spectrom., 1977, 12, N 1, 16—20.
 Smith, B. A., Williams, D. H. Gas-phase isomerisation in ionradicals (C₄H₈)+ and (C₆H₁₂)+. J. Chem. Soc. (B), 1970, N 8, 1259—1532.
 Rang, S., Müürisepp, M., Liitmaa, M., Eisen, O. Field ionisation mass spectrometry of higher n-alkenes. Org. Mass. Spectrom., 1978, 13, N 4, 181.
 Lehman, W. D., Beckey, H. D. Field ionisation mass spectrometry of stereoisomeric dihalogenocyclobutanes, 1,2-dibromoethylenes and some alkenes. Org. Mass. Spectrom., 1974, 9, N 11, 1086—1094.
- dihalogenocyclobutanes, 1,2-dibromoethylenes and some alkenes. Org. Mass. Spectrom., 1974, 9, N 11, 1086—1094.
 7. Beckey, H. D. Field Ionization Mass Spectrometry. Berlin, 1971.
 8. Bingham, R. C., Dewar, M. J. S., Lo, D. H. Ground states of molecules. XXV. MINDO/3 an improved version of the MINDO semiempirical SCF MO method. J. Amer. Chem. Soc., 1975, 97, N 6, 1285—1293.
 9. Fletcher, R. Function minimisation without evaluating derivatives. A review. Comput. J., 1965, 8, 33—41.
 10. Bingham, R. C., Dewar, M. J. S., Lo, D. H. Ground states of molecules. XXVI. MINDO/3 calculations for hydrocarbons. J. Amer. Chem. Soc., 1975, 97, N 6, 1294—1301.
- 1294-1301.
- Rabinovitch, B. S., Michel, K. W. The thermal unimolecular cis-trans-isomerisation of cis-butene-2. J. Amer. Chem. Soc., 1959, 81, N 19, 5065—5071.
 Метсала А., Лобанов В., Ранг С., Эйзен О. Изучение поведения цис- и транс-изоме-ров 2-бутена и 3-гексена при ионизации. Изв. АН ЭССР. Хим. (в печати).
- 13. Lifshitz, C., Long, F. A. Appearance potentials and mass spectra of fluorinated ethylenes. 1. Decomposition mechanism and their energetics. — J. Phys. Chem., 1963, 67, N 11, 2453—2469.
 14. Maier, W. B. Dissociative ionisation of molecules by rare gas ion impact. — J. Chem.

- Mater, W. B. Dissociative ionisation of molecules by rare gas ion impact. J. Chem. Phys., 1965, 42, N 5, 1790.
 Cox, J. D., Pilcher, B. Thermochemistry of Organic and Organometallic Compounds. New York, 1970.
 Millard, B. J., Shaw, D. F. Hydrogen rearrangements in some unsaturated ions. J. Chem. Soc. (B), 1966, N 7, 664—669.

Институт химии Академии наук Эстонской ССР

Поступила в редакцию 3/VII 1986

Институт физической химии Академии наук Украинской ССР

2-BUTEENI ISOMEERIDE ELEKTRONI LÖÖGI MASSISPEKTRITE TEOREETILINE INTERPRETATSIOON

Poolempiirilise MINDO/3 meetodi abil on uuritud 2-buteeni *cis-* ja *trans-*isomeeride molekuli ja katiooni tasakaalulisi konfiguratsioone, arvutatud keemiliste sidemete energiate muutused ionisatsioonil ja esitatud kildioonide tekkemehhanismid.

A. METSALA, V. LOBANOV, Silvia RANG, O. EISEN

THEORETICAL INVESTIGATION OF THE ELECTRON IMPACT MASS SPECTRA OF THE ISOMERS OF 2-BUTENE

The equilibrium geometry of *cis*- and *trans*-isomers of 2-butene has been studied by the semiempirical MINDO/3 method. The changes in chemical bonds energies by ionization have been estimated and the mechanisms of the formation of fragment ions have been proposed.